-
Notifications
You must be signed in to change notification settings - Fork 115
/
Copy pathtrain.py
860 lines (714 loc) · 33.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
# coding: utf-8
"""Trainining script for GAN-based TTS and VC models.
usage: train.py [options] <inputs_dir> <outputs_dir>
options:
--hparams_name=<name> Name of hyper params [default: vc].
--hparams=<parmas> Hyper parameters to be overrided [default: ].
--checkpoint-dir=<dir> Where to save models [default: checkpoints].
--checkpoint-g=<name> Load generator from checkpoint if given.
--checkpoint-d=<name> Load discriminator from checkpoint if given.
--checkpoint-r=<name> Load reference model to compute spoofing rate.
--max_files=<N> Max num files to be collected. [default: -1]
--discriminator-warmup Warmup discriminator.
--w_d=<f> Adversarial (ADV) loss weight [default: 1.0].
--mse_w=<f> Mean squared error (MSE) loss weight [default: 0.0].
--mge_w=<f> Minimum generation error (MGE) loss weight [default: 1.0].
--restart_epoch=<N> Restart epoch [default: -1].
--reset_optimizers Reset optimizers, otherwise restored from checkpoint.
--log-event-path=<name> Log event path.
--disable-slack Disable slack message.
-h, --help Show this help message and exit
"""
from docopt import docopt
import numpy as np
import torch
from torch import nn
from torch.autograd import Variable
from torch import optim
from torch.nn import functional as F
import torch.backends.cudnn as cudnn
from torch.utils import data as data_utils
from sklearn.model_selection import train_test_split
import sys
import time
import os
import math
from os.path import splitext, join, abspath, exists
from tqdm import tqdm
from warnings import warn
import tensorboard_logger
from tensorboard_logger import log_value
from nnmnkwii import preprocessing as P
from nnmnkwii import metrics
from nnmnkwii.paramgen import unit_variance_mlpg_matrix
from nnmnkwii.datasets import FileSourceDataset, FileDataSource
from nnmnkwii.datasets import MemoryCacheDataset
import gantts
from gantts.multistream import multi_stream_mlpg, get_static_features
from gantts.multistream import get_static_stream_sizes, select_streams
from gantts.multistream import recompute_delta_features
from gantts.seqloss import MaskedMSELoss, sequence_mask
import hparams
from hparams import hparams_debug_string
hp = None # to be initailized later
global_epoch = 0
test_size = 0.112 # 1000 training data for cmu arctic
random_state = 1234
checkpoint_interval = 10
use_cuda = torch.cuda.is_available()
class NPYDataSource(FileDataSource):
def __init__(self, dirname, train=True, max_files=None, test=False):
self.dirname = dirname
self.train = train
self.test = test
self.max_files = max_files
def collect_files(self):
npy_files = list(filter(lambda x: splitext(x)[-1] == ".npy",
os.listdir(self.dirname)))
npy_files = sorted(list(map(lambda d: join(self.dirname, d), npy_files)))
# last 5 is for real testset
if self.test:
return npy_files[len(npy_files) - 5:]
npy_files = npy_files[:len(npy_files) - 5]
if self.max_files is not None and self.max_files > 0:
npy_files = npy_files[:self.max_files]
train_files, test_files = train_test_split(
npy_files, test_size=test_size, random_state=random_state)
return train_files if self.train else test_files
def collect_features(self, path):
return np.load(path)
class VCDataset(object):
def __init__(self, X, Y, data_mean, data_std):
self.X = X
self.Y = Y
self.data_mean = data_mean
self.data_std = data_std
def __getitem__(self, idx):
x = P.scale(self.X[idx], self.data_mean, self.data_std)
y = P.scale(self.Y[idx], self.data_mean, self.data_std)
return x, y
def __len__(self):
return len(self.X)
class TTSDataset(object):
def __init__(self, X, Y, X_data_min, X_data_max, Y_data_mean, Y_data_std):
self.X = X
self.Y = Y
self.X_data_min, self.X_data_scale = P.minmax_scale_params(
X_data_min, X_data_max, feature_range=(0.01, 0.99))
self.Y_data_mean = Y_data_mean
self.Y_data_std = Y_data_std
def __getitem__(self, idx):
x = P.minmax_scale(
self.X[idx], min_=self.X_data_min, scale_=self.X_data_scale,
feature_range=(0.01, 0.99))
y = P.scale(self.Y[idx], self.Y_data_mean, self.Y_data_std)
# To handle inconsistent static-delta relationship after normalization
# This is required to use MSE + MGE loss work
if hp.recompute_delta_features:
y = recompute_delta_features(y, self.Y_data_mean, self.Y_data_std,
hp.windows, hp.stream_sizes,
hp.has_dynamic_features)
return x, y
def __len__(self):
return len(self.X)
def _pad_2d(x, max_len):
x = np.pad(x, [(0, max_len - len(x)), (0, 0)],
mode="constant", constant_values=0)
return x
def collate_fn(batch):
"""Create batch"""
input_lengths = np.array([len(x[0]) for x in batch], dtype=np.int)
max_len = np.max(input_lengths)
x_batch = np.array([_pad_2d(x[0], max_len) for x in batch],
dtype=np.float32)
y_batch = np.array([_pad_2d(x[1], max_len) for x in batch],
dtype=np.float32)
x_batch = torch.FloatTensor(x_batch)
y_batch = torch.FloatTensor(y_batch)
input_lengths = torch.LongTensor(input_lengths)
return x_batch, y_batch, input_lengths
def save_checkpoint(model, optimizer, epoch, checkpoint_dir, name):
checkpoint_path = join(
checkpoint_dir, "checkpoint_epoch{}_{}.pth".format(
epoch, name))
torch.save({
"state_dict": model.state_dict(),
"optimizer": optimizer.state_dict(),
"global_epoch": epoch,
}, checkpoint_path)
print("Saved checkpoint:", checkpoint_path)
def get_vc_data_loaders(X, Y, data_mean, data_var):
X_train, X_test = X["train"], X["test"]
Y_train, Y_test = Y["train"], Y["test"]
# Sequence-wise train loader
X_train_cache_dataset = MemoryCacheDataset(X_train, cache_size=hp.cache_size)
Y_train_cache_dataset = MemoryCacheDataset(Y_train, cache_size=hp.cache_size)
train_dataset = VCDataset(
X_train_cache_dataset, Y_train_cache_dataset, data_mean, data_std)
train_loader = data_utils.DataLoader(
train_dataset, batch_size=hp.batch_size,
num_workers=hp.num_workers, pin_memory=hp.pin_memory,
shuffle=True, collate_fn=collate_fn)
# Sequence-wise test loader
X_test_cache_dataset = MemoryCacheDataset(X_test, cache_size=hp.cache_size)
Y_test_cache_dataset = MemoryCacheDataset(Y_test, cache_size=hp.cache_size)
test_dataset = VCDataset(
X_test_cache_dataset, Y_test_cache_dataset, data_mean, data_std)
test_loader = data_utils.DataLoader(
test_dataset, batch_size=hp.batch_size,
num_workers=hp.num_workers, pin_memory=hp.pin_memory,
shuffle=False, collate_fn=collate_fn)
dataset_loaders = {"train": train_loader, "test": test_loader}
return dataset_loaders
def get_tts_data_loaders(X, Y, X_data_min, X_data_max, Y_data_mean, Y_data_std):
X_train, X_test = X["train"], X["test"]
Y_train, Y_test = Y["train"], Y["test"]
# Sequence-wise train loader
X_train_cache_dataset = MemoryCacheDataset(X_train, cache_size=hp.cache_size)
Y_train_cache_dataset = MemoryCacheDataset(Y_train, cache_size=hp.cache_size)
train_dataset = TTSDataset(
X_train_cache_dataset, Y_train_cache_dataset,
X_data_min, X_data_max, Y_data_mean, Y_data_std)
train_loader = data_utils.DataLoader(
train_dataset, batch_size=hp.batch_size,
num_workers=hp.num_workers, pin_memory=hp.pin_memory,
shuffle=True, collate_fn=collate_fn)
# Sequence-wise test loader
X_test_cache_dataset = MemoryCacheDataset(X_test, cache_size=hp.cache_size)
Y_test_cache_dataset = MemoryCacheDataset(Y_test, cache_size=hp.cache_size)
test_dataset = TTSDataset(
X_test_cache_dataset, Y_test_cache_dataset,
X_data_min, X_data_max, Y_data_mean, Y_data_std)
test_loader = data_utils.DataLoader(
test_dataset, batch_size=hp.batch_size,
num_workers=hp.num_workers, pin_memory=hp.pin_memory,
shuffle=False, collate_fn=collate_fn)
dataset_loaders = {"train": train_loader, "test": test_loader}
return dataset_loaders
def get_selected_static_stream(y_hat_static):
static_stream_sizes = get_static_stream_sizes(
hp.stream_sizes, hp.has_dynamic_features, len(hp.windows))
y_hat_selected = select_streams(y_hat_static, static_stream_sizes,
streams=hp.adversarial_streams)
# 0-th mgc with adversarial trainging affects speech quality
# ref: saito17asja_gan.pdf
if hp.mask_nth_mgc_for_adv_loss > 0:
assert hp == hparams.tts_acoustic
y_hat_selected = y_hat_selected[:, :, hp.mask_nth_mgc_for_adv_loss:]
return y_hat_selected
def update_discriminator(model_d, optimizer_d, x, y_static, y_hat_static, lengths,
mask, phase, eps=1e-20):
# Select streams
if hp.adversarial_streams is not None:
y_static_adv = get_selected_static_stream(y_static)
y_hat_static_adv = get_selected_static_stream(y_hat_static)
else:
y_static_adv, y_hat_static_adv = y_static, y_hat_static
if hp.discriminator_linguistic_condition:
y_static_adv = torch.cat((x, y_static_adv), -1)
y_hat_static_adv = torch.cat((x, y_hat_static_adv), -1)
T = mask.sum().item()
# Real
D_real = model_d(y_static_adv, lengths=lengths)
real_correct_count = ((D_real > 0.5).float() * mask).sum().item()
# Fake
D_fake = model_d(y_hat_static_adv, lengths=lengths)
fake_correct_count = ((D_fake < 0.5).float() * mask).sum().item()
# Loss
loss_real_d = -(torch.log(D_real + eps) * mask).sum() / T
loss_fake_d = -(torch.log(1 - D_fake + eps) * mask).sum() / T
loss_d = loss_real_d + loss_fake_d
if phase == "train":
loss_d.backward(retain_graph=True)
torch.nn.utils.clip_grad_norm_(model_d.parameters(), 1.0)
optimizer_d.step()
return loss_d.item(), loss_fake_d.item(), loss_real_d.item(),\
real_correct_count, fake_correct_count
def update_generator(model_g, model_d, optimizer_g,
x, y, y_hat, y_static, y_hat_static,
adv_w, lengths, mask, phase,
mse_w=None, mge_w=None, eps=1e-20):
T = mask.sum().item()
criterion = MaskedMSELoss()
# MSELoss in static feature domain
loss_mge = criterion(y_hat_static, y_static, mask=mask)
# MSELoss in static + delta features domain
loss_mse = criterion(y_hat, y, mask=mask)
# Adversarial loss
if adv_w > 0:
# Select streams
if hp.adversarial_streams is not None:
y_hat_static_adv = get_selected_static_stream(y_hat_static)
else:
y_hat_static_adv = y_hat_static
if hp.discriminator_linguistic_condition:
y_hat_static_adv = torch.cat((x, y_hat_static_adv), -1)
loss_adv = -(torch.log(model_d(
y_hat_static_adv, lengths=lengths) + eps) * mask).sum() / T
else:
loss_adv = Variable(y.data.new(1).zero_())
# MSE + MGE + ADV loss
# try to decieve discriminator
loss_g = (mse_w * loss_mse + mge_w * loss_mge) + adv_w * loss_adv
if phase == "train":
loss_g.backward()
torch.nn.utils.clip_grad_norm_(model_g.parameters(), 1.0)
optimizer_g.step()
return loss_mse.item(), loss_mge.item(), loss_adv.item(), loss_g.item()
def exp_lr_scheduler(optimizer, epoch, nepoch, init_lr=0.0001, lr_decay_epoch=100):
"""Decay learning rate by a factor of 0.1 every lr_decay_epoch epochs."""
lr = init_lr * (0.1**(epoch // lr_decay_epoch))
if epoch % lr_decay_epoch == 0:
print('LR is set to {} at epoch {}'.format(lr, epoch))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return optimizer
def apply_generator(model_g, x, R, lengths):
if model_g.include_parameter_generation():
# Case: models include parameter generation in itself
# Mulistream features cannot be used in this case
y_hat, y_hat_static = model_g(x, R, lengths=lengths)
else:
# Case: generic models (can be sequence model)
assert hp.has_dynamic_features is not None
y_hat = model_g(x, lengths=lengths)
# Handle dimention mismatch
# This happens when we use pad_packed_sequence
if y_hat.size(1) != x.size(1):
y_hat = F.pad(y_hat.unsqueeze(
0), (0, 0, x.size(1) - y_hat.size(-2), 0)).squeeze(0)
y_hat_static = multi_stream_mlpg(
y_hat, R, hp.stream_sizes, hp.has_dynamic_features)
return y_hat, y_hat_static
def inv_scale(mgc, lf0, vuv, bap, Y_mean, Y_std, binalize_vuv=True):
# static + dynamic domain
mgc_dim, lf0_dim, vuv_dim, bap_dim = hp.stream_sizes
windows = hp.windows
mgc_start_idx = 0
lf0_start_idx = mgc_dim
vuv_start_idx = lf0_start_idx + lf0_dim
bap_start_idx = vuv_start_idx + vuv_dim
mgc = P.inv_scale(mgc, Y_mean[:mgc_dim // len(windows)],
Y_std[:mgc_dim // len(windows)])
lf0 = P.inv_scale(lf0, Y_mean[lf0_start_idx:lf0_start_idx + lf0_dim // len(windows)],
Y_std[lf0_start_idx:lf0_start_idx + lf0_dim // len(windows)])
bap = P.inv_scale(bap, Y_mean[bap_start_idx:bap_start_idx + bap_dim // len(windows)],
Y_std[bap_start_idx:bap_start_idx + bap_dim // len(windows)])
vuv = P.inv_scale(vuv, Y_mean[vuv_start_idx], Y_std[vuv_start_idx])
if binalize_vuv:
vuv[vuv > 0.5] = 1.0
vuv[vuv <= 0.5] = 0
vuv = vuv.long()
return mgc, lf0, vuv, bap
def split_streams(y_static, Y_data_mean, Y_data_std):
# static domain
mgc_dim, lf0_dim, vuv_dim, bap_dim = get_static_stream_sizes(
hp.stream_sizes, hp.has_dynamic_features, len(hp.windows))
mgc_start_idx = 0
lf0_start_idx = mgc_dim
vuv_start_idx = lf0_start_idx + lf0_dim
bap_start_idx = vuv_start_idx + vuv_dim
mgc = y_static[:, :, :lf0_start_idx]
lf0 = y_static[:, :, lf0_start_idx:vuv_start_idx]
vuv = y_static[:, :, vuv_start_idx]
bap = y_static[:, :, bap_start_idx:]
return inv_scale(mgc, lf0, vuv, bap, Y_data_mean, Y_data_std)
def compute_distortions(y_static, y_hat_static, Y_data_mean, Y_data_std, lengths=None):
if hp.name == "acoustic":
mgc, lf0, vuv, bap = split_streams(y_static, Y_data_mean, Y_data_std)
mgc_hat, lf0_hat, vuv_hat, bap_hat = split_streams(
y_hat_static, Y_data_mean, Y_data_std)
try:
f0_mse = metrics.lf0_mean_squared_error(
lf0, vuv, lf0_hat, vuv_hat,
lengths=lengths, linear_domain=True)
except ZeroDivisionError:
f0_mse = np.nan
distortions = {
"mcd": metrics.melcd(mgc[:, :, 1:], mgc_hat[:, :, 1:], lengths=lengths),
"bap_mcd": metrics.melcd(bap, bap_hat, lengths=lengths) / 10.0,
"f0_rmse": np.sqrt(f0_mse),
"vuv_err": metrics.vuv_error(vuv, vuv_hat, lengths=lengths),
}
elif hp.name == "duration":
y_static_invscale = P.inv_scale(y_static, Y_data_mean, Y_data_std)
y_hat_static_invscale = P.inv_scale(y_hat_static, Y_data_mean, Y_data_std)
distortions = {"dur_rmse": math.sqrt(metrics.mean_squared_error(
y_static_invscale, y_hat_static_invscale, lengths=lengths))}
elif hp.name == "vc":
static_dim = hp.order
y_static_invscale = P.inv_scale(y_static, Y_data_mean[:static_dim], Y_data_std[:static_dim])
y_hat_static_invscale = P.inv_scale(
y_hat_static, Y_data_mean[:static_dim], Y_data_std[:static_dim])
distortions = {"mcd": metrics.melcd(
y_static_invscale, y_hat_static_invscale, lengths=lengths)}
else:
assert False
return distortions
def train_loop(models, optimizers, dataset_loaders,
w_d=0.0, mse_w=0.0, mge_w=1.0,
update_d=True, update_g=True,
reference_discriminator=None):
model_g, model_d = models
optimizer_g, optimizer_d = optimizers
if use_cuda:
model_g, model_d = model_g.cuda(), model_d.cuda()
if reference_discriminator is not None:
reference_discriminator = reference_discriminator.cuda()
reference_discriminator.eval()
if hp == hparams.vc:
Y_data_mean = dataset_loaders["train"].dataset.data_mean
Y_data_std = dataset_loaders["train"].dataset.data_std
else:
Y_data_mean = dataset_loaders["train"].dataset.Y_data_mean
Y_data_std = dataset_loaders["train"].dataset.Y_data_std
Y_data_mean = torch.from_numpy(Y_data_mean)
Y_data_std = torch.from_numpy(Y_data_std)
if use_cuda:
Y_data_mean = Y_data_mean.cuda()
Y_data_std = Y_data_std.cuda()
E_loss_mge = 1
E_loss_adv = 1
has_dynamic = np.any(hp.has_dynamic_features)
global global_epoch
for global_epoch in tqdm(range(global_epoch + 1, hp.nepoch + 1)):
# LR schedule
if hp.lr_decay_schedule and update_g:
optimizer_g = exp_lr_scheduler(optimizer_g, global_epoch - 1, hp.nepoch,
init_lr=hp.optimizer_g_params["lr"],
lr_decay_epoch=hp.lr_decay_epoch)
if hp.lr_decay_schedule and update_d:
optimizer_d = exp_lr_scheduler(optimizer_d, global_epoch - 1, hp.nepoch,
init_lr=hp.optimizer_d_params["lr"],
lr_decay_epoch=hp.lr_decay_epoch)
for phase in ["train", "test"]:
running_loss = {"generator": 0.0, "mse": 0.0, "mge": 0.0,
"loss_real_d": 0.0,
"loss_fake_d": 0.0,
"loss_adv": 0.0,
"discriminator": 0.0}
if phase == "train":
model_g.train()
model_d.train()
else:
model_g.eval()
model_d.eval()
running_metrics = {}
real_correct_count, fake_correct_count = 0, 0
regard_fake_as_natural = 0
N = len(dataset_loaders[phase])
total_num_frames = 0
for x, y, lengths in dataset_loaders[phase]:
# Sort by lengths. This is needed for pytorch's PackedSequence
sorted_lengths, indices = torch.sort(
lengths.view(-1), dim=0, descending=True)
sorted_lengths = sorted_lengths.long()
cpu_sorted_lengths = list(sorted_lengths)
max_len = sorted_lengths[0]
# Get sorted batch
x, y = x[indices], y[indices]
# Generator noise
if hp.generator_add_noise:
z = torch.rand(x.size(0), max_len, hp.generator_noise_dim)
else:
z = None
# Construct MLPG paramgen matrix for every batch
if has_dynamic:
R = unit_variance_mlpg_matrix(hp.windows, max_len)
R = torch.from_numpy(R)
R = R.cuda() if use_cuda else R
else:
R = None
if use_cuda:
x, y = x.cuda(), y.cuda()
sorted_lengths = sorted_lengths.cuda()
z = z.cuda() if z is not None else None
# Pack into variables
x, y = Variable(x), Variable(y)
z = Variable(z) if z is not None else None
sorted_lengths = Variable(sorted_lengths)
# Static features
y_static = get_static_features(
y, len(hp.windows), hp.stream_sizes, hp.has_dynamic_features)
# Num frames in batch
total_num_frames += sorted_lengths.float().sum().item()
# Mask
mask = sequence_mask(sorted_lengths).unsqueeze(-1)
# Reset optimizers state
optimizer_g.zero_grad()
optimizer_d.zero_grad()
# Apply model (generator)
generator_input = torch.cat((x, z), -1) if z is not None else x
y_hat, y_hat_static = apply_generator(
model_g, generator_input, R, cpu_sorted_lengths)
# Should have same time length
assert x.size(1) == y_hat.size(1)
# Compute spoofing rate
if reference_discriminator is not None:
if hp.adversarial_streams is not None:
y_hat_static_ref = get_selected_static_stream(y_hat_static)
else:
y_hat_static_ref = y_hat_static
target = reference_discriminator(
y_hat_static_ref, lengths=cpu_sorted_lengths)
# Count samples classified as natural, while inputs are
# actually generated.
regard_fake_as_natural += ((target > 0.5).float() * mask).sum().item()
### Update discriminator ###
# Natural: 1, Genrated: 0
if update_d:
loss_d, loss_fake_d, loss_real_d, _real_correct_count,\
_fake_correct_count = update_discriminator(
model_d, optimizer_d, x, y_static, y_hat_static,
cpu_sorted_lengths, mask, phase)
running_loss["discriminator"] += loss_d
running_loss["loss_fake_d"] += loss_fake_d
running_loss["loss_real_d"] += loss_real_d
real_correct_count += _real_correct_count
fake_correct_count += _fake_correct_count
### Update generator ###
if update_g:
adv_w = w_d * float(np.clip(E_loss_mge / E_loss_adv, 0, 1e+3))
loss_mse, loss_mge, loss_adv, loss_g = update_generator(
model_g, model_d, optimizer_g, x, y, y_hat,
y_static, y_hat_static,
adv_w, cpu_sorted_lengths, mask, phase,
mse_w=mse_w, mge_w=mge_w)
running_loss["mse"] += loss_mse
running_loss["mge"] += loss_mge
running_loss["loss_adv"] += loss_adv
running_loss["generator"] += loss_g
# Distotions
distortions = compute_distortions(
y_static.data, y_hat_static.data,
Y_data_mean, Y_data_std, sorted_lengths.data)
for k, v in distortions.items():
try:
running_metrics[k] += float(v)
except KeyError:
running_metrics[k] = float(v)
# Update expectation
# NOTE: E_loss_mge is not exactly same as E[L_mge(y,y_hat)]
# in thier papers, since we add MSE term in the loss.
# It will be same if mse_w = 0 and mge_w = 1.
if update_d and update_g and phase == "train":
E_loss_mge = (mse_w * running_loss["mse"] +
mge_w * running_loss["mge"]) / N
E_loss_adv = running_loss["loss_adv"] / N
log_value("E(mge)", E_loss_mge, global_epoch)
log_value("E(adv)", E_loss_adv, global_epoch)
log_value("MGE/ADV loss weight", E_loss_mge / E_loss_adv, global_epoch)
# Log loss
for ty, enabled in [("mse", update_g),
("mge", update_g),
("discriminator", update_d),
("loss_real_d", update_d),
("loss_fake_d", update_d),
("loss_adv", update_g and update_d),
("generator", update_g)]:
if enabled:
ave_loss = running_loss[ty] / N
log_value(
"{} {} loss".format(phase, ty), ave_loss, global_epoch)
# Log eval metrics
for k, v in running_metrics.items():
log_value(
"{} {} metric".format(phase, k), v / N, global_epoch)
# Log discriminator classification accuracy
if update_d:
log_value("Real {} acc".format(phase),
real_correct_count / total_num_frames, global_epoch)
log_value("Fake {} acc".format(phase),
fake_correct_count / total_num_frames, global_epoch)
# Log spoofing rate for generated features by reference model
if reference_discriminator is not None:
log_value("{} spoofing rate".format(phase),
regard_fake_as_natural / total_num_frames, global_epoch)
# Save checkpoints
if global_epoch % checkpoint_interval == 0:
for model, optimizer, enabled, name in [
(model_g, optimizer_g, update_g, "Generator"),
(model_d, optimizer_d, update_d, "Discriminator")]:
if enabled:
save_checkpoint(
model, optimizer, global_epoch, checkpoint_dir, name)
return 0
def load_checkpoint(model, optimizer, checkpoint_path):
global global_epoch
print("Load checkpoint from: {}".format(checkpoint_path))
checkpoint = torch.load(checkpoint_path)
model.load_state_dict(checkpoint["state_dict"])
if optimizer is not None:
optimizer.load_state_dict(checkpoint["optimizer"])
global_epoch = checkpoint["global_epoch"]
if __name__ == "__main__":
since = time.time()
args = docopt(__doc__)
print("Command line args:\n", args)
hp = getattr(hparams, args["--hparams_name"])
# Override hyper parameters
hp.parse(args["--hparams"])
print(hparams_debug_string(hp))
inputs_dir = args["<inputs_dir>"]
outputs_dir = args["<outputs_dir>"]
# Assuming inputs and outputs are in same parent directoy
# This can be relaxed, but for now it's fine.
data_dir = abspath(join(inputs_dir, os.pardir))
assert data_dir == abspath(join(outputs_dir, os.pardir))
checkpoint_dir = args["--checkpoint-dir"]
checkpoint_path_d = args["--checkpoint-d"]
checkpoint_path_g = args["--checkpoint-g"]
checkpoint_path_r = args["--checkpoint-r"]
max_files = int(args["--max_files"])
w_d = float(args["--w_d"])
mse_w = float(args["--mse_w"])
mge_w = float(args["--mge_w"])
discriminator_warmup = args["--discriminator-warmup"]
restart_epoch = int(args["--restart_epoch"])
reset_optimizers = args["--reset_optimizers"]
log_event_path = args["--log-event-path"]
disable_slack = args["--disable-slack"]
# Flags to update discriminator/generator or not
update_d = w_d > 0
update_g = False if discriminator_warmup else True
if not exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
X = {"train": {}, "test": {}}
Y = {"train": {}, "test": {}}
utt_lengths = {"train": {}, "test": {}}
for phase in ["train", "test"]:
train = True if phase == "train" else False
X[phase] = FileSourceDataset(
NPYDataSource(inputs_dir, train=train, max_files=max_files))
Y[phase] = FileSourceDataset(
NPYDataSource(outputs_dir, train=train, max_files=max_files))
# Assuming X and Y are time aligned.
x_lengths = np.array([len(x) for x in X[phase]])
y_lengths = np.array([len(y) for y in Y[phase]])
assert np.allclose(x_lengths, y_lengths)
utt_lengths[phase] = x_lengths
print("Size of dataset for {}: {}".format(phase, len(X[phase])))
# Collect stats for noramlization (from training data)
# if this becomes performance heavy (not now), this can be done in a separte
# script
phase = "train"
# TODO: ugly?
if hp == hparams.vc:
# Collect mean/var from source and target features
data_mean, data_var, last_sample_count = P.meanvar(
X[phase], utt_lengths[phase], return_last_sample_count=True)
data_mean, data_var = P.meanvar(
Y[phase], utt_lengths[phase], mean_=data_mean, var_=data_var,
last_sample_count=last_sample_count)
data_std = np.sqrt(data_var)
np.save(join(data_dir, "data_mean"), data_mean)
np.save(join(data_dir, "data_var"), data_var)
if hp.generator_params["in_dim"] is None:
hp.generator_params["in_dim"] = data_mean.shape[-1]
if hp.generator_params["out_dim"] is None:
hp.generator_params["out_dim"] = data_mean.shape[-1]
# Dataset loaders
dataset_loaders = get_vc_data_loaders(X, Y, data_mean, data_std)
else:
ty = "acoustic" if hp == hparams.tts_acoustic else "duration"
X_data_min, X_data_max = P.minmax(X[phase])
Y_data_mean, Y_data_var = P.meanvar(Y[phase])
Y_data_std = np.sqrt(Y_data_var)
np.save(join(data_dir, "X_{}_data_min".format(ty)), X_data_min)
np.save(join(data_dir, "X_{}_data_max".format(ty)), X_data_max)
np.save(join(data_dir, "Y_{}_data_mean".format(ty)), Y_data_mean)
np.save(join(data_dir, "Y_{}_data_var".format(ty)), Y_data_var)
if hp.generator_params["in_dim"] is None:
D = X_data_min.shape[-1]
if hp.generator_add_noise:
D = D + hp.generator_noise_dim
hp.generator_params["in_dim"] = D
if hp.generator_params["out_dim"] is None:
hp.generator_params["out_dim"] = Y_data_mean.shape[-1]
if hp.discriminator_params["in_dim"] is None:
sizes = get_static_stream_sizes(
hp.stream_sizes, hp.has_dynamic_features, len(hp.windows))
D = int(np.array(sizes[hp.adversarial_streams]).sum())
if hp.adversarial_streams[0]:
D -= hp.mask_nth_mgc_for_adv_loss
if hp.discriminator_linguistic_condition:
D = D + X_data_min.shape[-1]
hp.discriminator_params["in_dim"] = D
dataset_loaders = get_tts_data_loaders(
X, Y, X_data_min, X_data_max, Y_data_mean, Y_data_std)
# Models
model_g = getattr(gantts.models, hp.generator)(**hp.generator_params)
model_d = getattr(gantts.models, hp.discriminator)(**hp.discriminator_params)
print("Generator:", model_g)
print("Discriminator:", model_d)
# Reference discriminator model to compute spoofing rate
if checkpoint_path_r is not None:
reference_discriminator = getattr(
gantts.models, hp.discriminator)(**hp.discriminator_params)
try:
load_checkpoint(reference_discriminator, None, checkpoint_path_r)
except:
warn("Invalid cehckpoint for reference discriminator")
reference_discriminator = None
else:
reference_discriminator = None
if use_cuda:
model_g, model_d = model_g.cuda(), model_d.cuda()
if reference_discriminator is not None:
reference_discriminator = reference_discriminator.cuda()
# Optimizers
optimizer_g = getattr(optim, hp.optimizer_g)(model_g.parameters(),
**hp.optimizer_g_params)
optimizer_d = getattr(optim, hp.optimizer_d)(model_d.parameters(),
**hp.optimizer_d_params)
# Load checkpoint
if checkpoint_path_d:
if reset_optimizers:
load_checkpoint(model_d, None, checkpoint_path_d)
else:
load_checkpoint(model_d, optimizer_d, checkpoint_path_d)
if checkpoint_path_g:
if reset_optimizers:
load_checkpoint(model_g, None, checkpoint_path_g)
else:
load_checkpoint(model_g, optimizer_g, checkpoint_path_g)
# Restart iteration at restart_epoch
if restart_epoch >= 0:
global_epoch = restart_epoch
# Setup tensorboard logger
if log_event_path is None:
log_event_path = "log/run-test" + str(np.random.randint(100000))
print("Los event path: {}".format(log_event_path))
tensorboard_logger.configure(log_event_path)
# Train
print("Start training from epoch {}".format(global_epoch))
train_loop((model_g, model_d), (optimizer_g, optimizer_d),
dataset_loaders, w_d=w_d, update_d=update_d, update_g=update_g,
reference_discriminator=reference_discriminator,
mse_w=mse_w, mge_w=mge_w)
# Save models
for model, optimizer, enabled, name in [
(model_g, optimizer_g, update_g, "Generator"),
(model_d, optimizer_d, update_d, "Discriminator")]:
if enabled:
save_checkpoint(
model, optimizer, global_epoch, checkpoint_dir, name)
if not disable_slack and "SLACK_API_TOKEN" in os.environ:
from slackclient import SlackClient
print("Posting to slack...")
slack_token = os.environ["SLACK_API_TOKEN"]
sc = SlackClient(slack_token)
try:
sc.api_call(
"chat.postMessage",
channel="#research",
text="""
Finally train.py finished! :tada:. Elapsed time: {}mins.
Command line args:
{}
{}
""".format((time.time() - since) // 60, args, hparams_debug_string(hp)))
except Exception as e:
print(str(e))
print("Finished!")
sys.exit(0)