-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsetup.py
39 lines (35 loc) · 1.49 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import os
from setuptools import setup
here = os.path.abspath(os.path.dirname(__file__))
# Get the long description from the README file
with open(os.path.join(here, 'README.md'), encoding='utf-8') as f:
long_description = f.read()
setup(
name='modularitypruning',
version='1.4.1',
package_dir={'modularitypruning': 'utilities'},
packages=['modularitypruning'],
url='https://github.com/ragibson/ModularityPruning',
license='',
author='Ryan Gibson',
author_email='[email protected]',
description='Pruning tool to identify small subsets of network partitions that are '
'significant from the perspective of stochastic block model inference.',
long_description=long_description,
long_description_content_type='text/markdown',
classifiers=[
'Development Status :: 5 - Production/Stable',
'Topic :: Scientific/Engineering :: Information Analysis',
'Programming Language :: Python :: 3',
'Programming Language :: Python :: 3.8',
'Programming Language :: Python :: 3.9',
'Programming Language :: Python :: 3.10',
'Programming Language :: Python :: 3.11',
'Programming Language :: Python :: 3.12',
'Programming Language :: Python :: 3 :: Only',
'License :: OSI Approved :: MIT License'
],
python_requires='>=3.8, <4',
install_requires=['leidenalg', 'matplotlib', "numpy", 'psutil', 'igraph',
"scikit-learn", "scipy>=1.7", 'seaborn', 'tqdm']
)