-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathutils.py
292 lines (239 loc) · 9.19 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
# -*- coding: UTF-8 -*-
import re
import os
import types
import csv
import time
import pickle
import numpy as np
import pandas as pd
import random
from Config import Config
import sys
reload(sys)
sys.setdefaultencoding('utf-8')
np.random.seed(1337)
config=Config()
def getEmbedding(emb_file, char2id):
emb_dic={}
with open(emb_file,'rb')as f:
for line in f.readlines():
line=line.rstrip().decode('utf-8')
line_list=line.split('\t')
key=line_list[0]
line_list.pop(0)
for i in xrange(len(line_list)):
line_list[i] = float(line_list[i])
emb_dic[key]=line_list
embedding_matrix = np.zeros((len(char2id.keys()),config.model_para['input_dim']))
count=0
for key in char2id.keys():
embedding_vector=emb_dic.get(key)
if embedding_vector is not None:
count+=1
embedding_matrix[char2id[key]] = embedding_vector
print 'get_emb_count:',count
return embedding_matrix
def saveMap(id2char, id2label):
with open(config.map_dict['char2id'], "wb") as outfile:
for idx in id2char:
outfile.write(id2char[idx].encode('utf-8') + "\t" + str(idx) + "\r\n")
with open(config.map_dict['label2id'], "wb") as outfile:
for idx in id2label:
outfile.write(id2label[idx].encode('utf-8') + "\t" + str(idx) + "\r\n")
print "saved map between token and id"
def get_resource_list(path):
df_train = pd.read_csv(path, delimiter='\t', quoting=csv.QUOTE_NONE, skip_blank_lines=False, header=None, names=["char", "label"], encoding='utf-8')
char = list(set(df_train["char"][df_train["char"].notnull()]))
label = list(set(df_train["label"][df_train["label"].notnull()]))
return char, label
def buildMap():
char=[]
label=[]
for path in config.dataset.values():
c, l = get_resource_list(path)
char.extend(c)
label.extend(l)
# map char of PA_data
if config.DS_data is not None:
df_train_PA = pd.read_csv(config.DS_data, delimiter='\t', quoting=csv.QUOTE_NONE, skip_blank_lines=False, header=None, names=["char", "label"], encoding='utf-8')
char_PA = list(set(df_train_PA["char"][df_train_PA["char"].notnull()]))
char.extend(char_PA)
char = list(set(char))
label = list(set(label))
char2id = dict(zip(char, range(1, len(char) + 1)))
label2id = dict(zip(label, range(1, len(label) + 1)))
id2char = dict(zip(range(1, len(char) + 1), char))
id2label = dict(zip(range(1, len(label) + 1), label))
id2char[0] = "<PAD>"
id2label[0] = "<PAD>"
char2id["<PAD>"] = 0
label2id["<PAD>"] = 0
id2char[len(char) + 1] = "<NEW>"
char2id["<NEW>"] = len(char) + 1
saveMap(id2char, id2label)
return char2id, id2char, label2id, id2label
# use "0" to padding the sentence
def padding(sample, maxlen):
for i in range(len(sample)):
if len(sample[i]) < maxlen:
sample[i] += [0 for _ in range(maxlen - len(sample[i]))]
return sample
def prepare(chars, labels, maxlen, is_padding=True):
X_char = []
y = []
tmp_char = []
tmp_y = []
for record in zip(chars, labels):
c = record[0]
l = record[1]
# empty line
if c == -1:
if len(tmp_char) <= maxlen:
X_char.append(tmp_char)
y.append(tmp_y)
tmp_char = []
tmp_y=[]
else:
tmp_char.append(c)
tmp_y.append(l)
if is_padding:
X_char = np.array(padding(X_char, maxlen))
else:
X_char = np.array(X_char)
y = np.array(padding(y, maxlen))
return X_char, y
def get_data(path, char2id, label2id):
df_train = pd.read_csv(path, delimiter='\t', quoting=csv.QUOTE_NONE, skip_blank_lines=False, header=None, names=["char", "label"], encoding='utf-8')
# map the char , label into id
df_train["char_id"] = df_train.char.map(lambda x : -1 if str(x) == str(np.nan) else char2id[x])
df_train["label_id"] = df_train.label.map(lambda x : -1 if str(x) == str(np.nan) else label2id[x])
X_char, y = prepare(df_train["char_id"], df_train["label_id"], config.maxlen)
return (X_char, y)
def get_PA_data(path, char2id, label2id):
if path is None: return [], []
df_train = pd.read_csv(path, delimiter='\t', quoting=csv.QUOTE_NONE, skip_blank_lines=False, header=None, names=["char", "label"], encoding='utf-8')
df_train["char_id"] = df_train.char.map(lambda x : -1 if str(x) == str(np.nan) else char2id[x])
sentence_pa = []
sentence=[]
padding_hot = [0 for i in range(len(label2id)+1)]
padding_hot[0] = 1
head_hot = [0 for i in range(len(label2id)+1)]
head_hot[len(label2id)] = 1
for i in range(len(df_train.label)):
if str(df_train.label[i]) == str(np.nan):
for j in range(config.maxlen-len(sentence)):
sentence.append(padding_hot)
sentence.insert(0, head_hot)
sentence.append(padding_hot)
sentence_pa.append(sentence)
sentence=[]
else:
if df_train.label[i]==u'UNK':
sentence.append([1 for i in range(len(label2id)+1)])
else:
index = int(label2id[df_train.label[i]])
label_pa=[0 for i in range(len(label2id)+1)]
label_pa[index]=1
sentence.append(label_pa)
X_char, y = prepare(df_train["char_id"], df_train["char_id"], config.maxlen)
return X_char, sentence_pa
def get_AllData(maxlen):
char2id, id2char, label2id, id2label = buildMap()
return get_PA_data(config.dataset['traindata'], char2id, label2id),get_data(config.dataset['devdata'], char2id, label2id), get_data(config.dataset['testdata'], char2id, label2id), get_PA_data(config.DS_data, char2id, label2id)
def merge_export_and_PA_train_data_with_sign(X_char_train, y_train, X_char_PA, y_PA):
sample = []
all_sample = []
expert_sign = [0]
PA_sign = [1]
for i in range(len(X_char_train)):
sample.append(X_char_train[i])
sample.append(y_train[i])
# append a sign to show hand_tagged_data :[0]
sample.append(expert_sign)
all_sample.append(sample)
sample=[]
sample=[]
for i in range(len(X_char_PA)):
sample.append(X_char_PA[i])
sample.append(y_PA[i])
# append a sign to show PA_data :[1]
sample.append(PA_sign)
all_sample.append(sample)
sample=[]
random.shuffle(all_sample)
X_char_merge_train = []
y_merge_train = []
sign_merge_train = []
for i in range(len(all_sample)):
X_char_merge_train.append(all_sample[i][0])
y_merge_train.append(all_sample[i][1])
sign_merge_train.append(all_sample[i][2][0])
return X_char_merge_train, y_merge_train, sign_merge_train
def merge_export_and_PA_train_data(X_char_train, y_train, X_char_PA, y_PA):
sample = []
all_sample = []
for i in range(len(X_char_train)):
sample.append(X_char_train[i])
sample.append(y_train[i])
all_sample.append(sample)
sample=[]
sample=[]
for i in range(len(X_char_PA)):
sample.append(X_char_PA[i])
sample.append(y_PA[i])
all_sample.append(sample)
sample=[]
random.shuffle(all_sample)
X_char_merge_train = []
y_merge_train = []
for i in range(len(all_sample)):
X_char_merge_train.append(all_sample[i][0])
y_merge_train.append(all_sample[i][1])
return X_char_merge_train, y_merge_train
def mapFunc(x, char2id):
if str(x) == str(np.nan):
return -1
elif x not in char2id:
return char2id["<NEW>"]
else:
return char2id[x]
def loadMap(token2id_filepath):
if not os.path.isfile(token2id_filepath):
print "file not exist, building map"
buildMap()
token2id = {}
id2token = {}
with open(token2id_filepath) as infile:
for row in infile:
row = row.rstrip().decode("utf-8")
token = row.split('\t')[0]
token_id = int(row.split('\t')[1])
token2id[token] = token_id
id2token[token_id] = token
return token2id, id2token
def nextBatch(X_char, y, start_index, batch_size=128):
last_index = start_index + batch_size
X_char_batch = list(X_char[start_index:min(last_index, len(X_char))])
y_batch = list(y[start_index:min(last_index, len(X_char))])
if last_index > len(X_char):
left_size = last_index - (len(X_char))
for i in range(left_size):
index = np.random.randint(len(X_char))
X_char_batch.append(X_char[index])
y_batch.append(y[index])
X_char_batch = np.array(X_char_batch)
y_batch = np.array(y_batch)
return X_char_batch, y_batch
def reward_nextBatch(X_char, y, start_index, batch_size=128):
last_index = start_index + batch_size
X_char_batch = list(X_char[start_index:min(last_index, len(X_char))])
y_batch = list(y[start_index:min(last_index, len(X_char))])
if last_index > len(X_char):
left_size = last_index - (len(X_char))
for i in range(left_size):
X_char_batch.append(X_char[i])
y_batch.append(y[i])
X_char_batch = np.array(X_char_batch)
y_batch = np.array(y_batch)
return X_char_batch, y_batch