-
Notifications
You must be signed in to change notification settings - Fork 117
/
Copy pathhf-chat-example.py
63 lines (50 loc) · 1.91 KB
/
hf-chat-example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import llamahf
import os
import torch
from transformers import StoppingCriteria, StoppingCriteriaList
# # to save memory use bfloat16
# torch.set_default_dtype(torch.bfloat16)
MODEL = 'decapoda-research/llama-7b-hf'
# MODEL = 'decapoda-research/llama-13b-hf'
# MODEL = 'decapoda-research/llama-30b-hf'
# MODEL = 'decapoda-research/llama-65b-hf'
if os.path.exists('./trained'):
MODEL = './trained'
tokenizer = llamahf.LLaMATokenizer.from_pretrained(MODEL)
model = llamahf.LLaMAForCausalLM.from_pretrained(MODEL, low_cpu_mem_usage=True)
model.to('cpu')
class StoppingCriteriaSub(StoppingCriteria):
def __init__(self):
super().__init__()
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, stops=[]):
print('-' * 40)
print(tokenizer.decode(input_ids[0]))
if input_ids[0][-1] == 13:
return True
return False
ctx = """A dialog, where User interacts with AI. AI is helpful, kind, obedient, honest, and knows its own limits.
User: Hello, AI.
AI: Hello! How can I assist you today?
"""
while True:
print('-' * 40)
print(ctx.rstrip("\n"))
prompt = input(f'User: ')
if ctx != "":
ctx = ctx + "User: " + prompt + "\n"
else:
ctx = prompt + "\n"
ctx = (ctx[-1920:]) if len(ctx) >= 2048 else ctx
if len(ctx.strip()) > 0:
batch = tokenizer(ctx, return_tensors="pt")
result = model.generate(batch["input_ids"].cpu(),
do_sample=True,
top_k=50,
max_length=2048,
top_p=0.95,
temperature=1.0,
stopping_criteria=StoppingCriteriaList([StoppingCriteriaSub()]),
# repetition_penalty=1.17
)
decoded = tokenizer.decode(result[0])
ctx = decoded + "\n"