-
Notifications
You must be signed in to change notification settings - Fork 117
/
Copy pathhf-training-example.py
71 lines (56 loc) · 2.57 KB
/
hf-training-example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import llamahf
import torch
import pandas as pd
from torch.utils.data import Dataset, random_split
from transformers import TrainingArguments, Trainer
# # to save memory use bfloat16 on cpu
# torch.set_default_dtype(torch.bfloat16)
MODEL = 'decapoda-research/llama-7b-hf'
DATA_FILE_PATH = 'datasets/elon_musk_tweets.csv'
OUTPUT_DIR = './trained'
texts = pd.read_csv(DATA_FILE_PATH)['text']
tokenizer = llamahf.LLaMATokenizer.from_pretrained(MODEL)
model = llamahf.LLaMAForCausalLM.from_pretrained(MODEL).cpu()
class TextDataset(Dataset):
def __init__(self, txt_list, tokenizer, max_length):
self.labels = []
self.input_ids = []
self.attn_masks = []
for txt in txt_list:
# encodings_dict = tokenizer(txt, truncation=True, max_length=max_length, padding="max_length")
encodings_dict = tokenizer(txt, truncation=True, max_length=max_length, pad_to_max_length=False)
self.input_ids.append(torch.tensor(encodings_dict['input_ids']))
self.attn_masks.append(torch.tensor(encodings_dict['attention_mask']))
def __len__(self): return len(self.input_ids)
def __getitem__(self, idx): return self.input_ids[idx], self.attn_masks[idx]
dataset = TextDataset(texts, tokenizer, max_length=max([len(tokenizer.encode(text)) for text in texts]))
train_dataset, val_dataset = random_split(dataset, [int(0.9 * len(dataset)), len(dataset) - int(0.9 * len(dataset))])
training_args = TrainingArguments(
save_steps=5000,
warmup_steps=10,
logging_steps=100,
weight_decay=0.05,
num_train_epochs=1,
logging_dir='./logs',
output_dir=OUTPUT_DIR,
no_cuda=True,
per_device_eval_batch_size=1,
per_device_train_batch_size=1)
trainer = Trainer(model=model,
args=training_args,
eval_dataset=val_dataset,
train_dataset=train_dataset,
data_collator=lambda data: {'input_ids': torch.stack([f[0] for f in data]),
'attention_mask': torch.stack([f[1] for f in data]),
'labels': torch.stack([f[0] for f in data])})
trainer.train()
trainer.save_model()
tokenizer.save_pretrained(OUTPUT_DIR)
del trainer
sample_outputs = model.generate(tokenizer('', return_tensors="pt").input_ids.cpu(),
do_sample=True,
top_k=50,
max_length=300,
top_p=0.95,
temperature=1.0)
print(tokenizer.decode(sample_outputs[0]))