diff --git a/README.md b/README.md index ee5b4a8009..d6f3ef9320 100755 --- a/README.md +++ b/README.md @@ -281,16 +281,16 @@ mamba install -c rapidsai -c conda-forge -c nvidia raft-dask pylibraft cuda-vers ``` ```bash -# for CUDA 12.0 -mamba install -c rapidsai -c conda-forge -c nvidia raft-dask pylibraft cuda-version=12.0 +# for CUDA 12.5 +mamba install -c rapidsai -c conda-forge -c nvidia raft-dask pylibraft cuda-version=12.5 ``` Note that the above commands will also install `libraft-headers` and `libraft`. You can also install the conda packages individually using the `mamba` command above. For example, if you'd like to install RAFT's headers and pre-compiled shared library to use in your project: ```bash -# for CUDA 12.0 -mamba install -c rapidsai -c conda-forge -c nvidia libraft libraft-headers cuda-version=12.0 +# for CUDA 12.5 +mamba install -c rapidsai -c conda-forge -c nvidia libraft libraft-headers cuda-version=12.5 ``` If installing the C++ APIs please see [using libraft](https://docs.rapids.ai/api/raft/nightly/using_libraft/) for more information on using the pre-compiled shared library. You can also refer to the [example C++ template project](https://github.com/rapidsai/raft/tree/branch-24.08/cpp/template) for a ready-to-go CMake configuration that you can drop into your project and build against installed RAFT development artifacts above.