-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy path.Rhistory
63 lines (63 loc) · 1.41 KB
/
.Rhistory
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
q()
q()
q()
Data1
Data1<- read.csv("testDataset.csv", header=T) # load the datasets
View(Data1)
View(Data1)
Data1.X1
Data1
Data1.X1
CumSum(Data1.X1)
duration = Data1$X1
duration
cumsum(duration)
testDataset <- read.csv("C:/Workspace/PomWalker/testDataset.csv", header=F)
View(testDataset)
testDataset
testDataset$V3
plot(testDataset)
myDates <- as.Dates(testDataset$V1)
myDates <- as.Date(testDataset$V1)
myDates
myDates <- as.Date(testDataset$V1, "%m/%d/%Y")
myDates
myDates <- as.Date(testDataset$V1, "%d/%m/%Y")
myDates
plot(myDates, testDataset$V3)
plot(myDates, cumsum(testDataset$V3))
lines(myDates, cumsum(testDataset$V3))
set.seed(3)
library(data.table)
ct <- data.table(id=sample(1:10,15,replace=TRUE),item=round(rnorm(15),3))
st <- ct[,countid:=.N,by=id]
CT <- data.frame( value = runif(10) , id = sample(5,10,repl=T) )
# sort on ID when calculating rle
Count <- rle( sort( CT$id ) )
# match values
CT$Count <- Count[[1]][ match( CT$id , Count[[2]] ) ]
CT
CT$ID
CT$id
CT$count
CT$Count
CT <- data.frame( value = runif(10) , id = sample(5,10,repl=T) )
CT
Count <- rle( sort( CT$id ) )
Count
CT
Count[[1]]
Count
Count <- rle( sort( testDataset$V2 ) )
Count <- rle( sort( testDataset$V1 ) )
Count <- rle( sort( testDataset$V3 ) )
testDataset$myDates
testDataset$myDates <-myDates
testDataset
testDataset$V2
Count(testDataset$V2)
testDataset$V2
unique(testDataset$V2)
unique(testDataset$V1)
library(plyr)
install.packages("library(plyr)")