-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathmain.py
143 lines (108 loc) · 4.73 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import sys
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.models as models
from PIL import Image
import matplotlib.pyplot as plt
import argparse
# ------custom module----
import config
import utils
sys.path.append('seg')
from seg.segmentation import *
from model import *
from merge_index import *
def gen_mask(image_path):
"""
Generate semantic mask
"""
seg_result = segmentation(image_path).squeeze(0)
channel, height_, width_ = seg_result.size()
for classes in merge_classes:
for index, each_class in enumerate(classes):
if index == 0:
zeros_index = each_class
base_map = seg_result[each_class, :, :].clone()
else:
base_map = base_map | seg_result[each_class, :, :]
seg_result[zeros_index, :, :] = base_map
return seg_result, height_, width_
if __name__ == '__main__':
#----------init------------
ap = argparse.ArgumentParser()
ap.add_argument("-s", "--style_image", required=True,
help="path of the style image")
ap.add_argument("-c", "--content_image", required=True,
help="path of the content image")
args = vars(ap.parse_args())
style_image_path = args["style_image"]
content_image_path = args["content_image"]
#-------------------------
print('Computing Laplacian matrix of content image')
L = utils.compute_lap(content_image_path)
print()
#-------------------------
print('Merge the similar semantic mask')
style_mask_origin, height_, width_ = gen_mask(style_image_path)
content_mask_origin, height2, width2 = gen_mask(content_image_path)
merged_style_mask = np.zeros((117, height_, width_), dtype='int')
merged_content_mask = np.zeros((117, height2, width2), dtype='int')
print()
#--------------------------
count = 0
for i in range(150):
temp = style_mask_origin[i, :, :].numpy()
if i not in del_classed and np.sum(temp)>50:
# print(count, np.sum(temp))
merged_style_mask[count, :, :] = temp
merged_content_mask[count, :, :] = content_mask_origin[i, :, :].numpy()
count += 1
else:
pass
print('Total semantic classes in style image: {}'.format(count))
style_mask_tensor = torch.from_numpy(merged_style_mask[:count, :, :]).float().to(config.device0)
content_mask_tensor = torch.from_numpy(merged_content_mask[:count, :, :]).float().to(config.device0)
#--------------------------
print('Save each mask as an image for debugging')
for i in range(count):
utils.save_pic( torch.stack([style_mask_tensor[i, :, :], style_mask_tensor[i, :, :], style_mask_tensor[i, :, :]], dim=0),
'style_mask_' + str(i) )
utils.save_pic( torch.stack([content_mask_tensor[i, :, :], content_mask_tensor[i, :, :], content_mask_tensor[i, :, :]], dim=0),
'content_mask_' + str(i) )
# Using GPU or CPU
device = torch.device(config.device0)
style_img = utils.load_image(style_image_path, None)
content_img = utils.load_image(content_image_path, None)
width_s, height_s = style_img.size
width_c, height_c = content_img.size
# print(height_s, width_s)
# print(height_c, width_c)
style_img = utils.image_to_tensor(style_img).unsqueeze(0)
content_img = utils.image_to_tensor(content_img).unsqueeze(0)
style_img = style_img.to(device, torch.float)
content_img = content_img.to(device, torch.float)
# print('content_img size: ', content_img.size())
# utils.show_pic(style_img, 'style image')
# utils.show_pic(content_img, 'content image')
# -------------------------
# Eval() means the parameters of cnn are frozen.
cnn = models.vgg19(pretrained=True).features.to(config.device0).eval()
cnn_normalization_mean = torch.tensor([0.485, 0.456, 0.406]).to(config.device0)
cnn_normalization_std = torch.tensor([0.229, 0.224, 0.225]).to(config.device0)
# Two different initialization ways
input_img = torch.randn(1, 3, height_c, width_c).to(config.device0)
# input_img = content_img.clone()
# print('input_img size: ', input_img.size())
output = run_style_transfer(cnn, cnn_normalization_mean, cnn_normalization_std,
content_img, style_img, input_img,
style_mask_tensor, content_mask_tensor, L)
print('Style transfer completed')
utils.save_pic(output, 'deep_style_tranfer')
print()
#--------------------------
print('Postprocessing......')
utils.post_process(output, content_image_path)
print('Done!')