-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_linear.py
462 lines (384 loc) · 17.4 KB
/
main_linear.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
from __future__ import print_function
import os
import sys
import argparse
import warnings
import time
import math
import random
import builtins
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.multiprocessing as mp
import torch.distributed as dist
from torchvision import transforms, datasets
from utils.util import *
from utils.tinyimagenet import TinyImageNet
from utils.imagenet import ImageNetSubset
from networks.resnet_big import ConResNet, LinearClassifier
from networks.vgg_big import ConVGG, LinearClassifier_VGG
from networks.wrn_big import ConWRN, LinearClassifier_WRN
from networks.efficient_big import ConEfficientNet, LinearClassifier_EFF
def parse_option():
parser = argparse.ArgumentParser('argument for training')
parser.add_argument('--exp_name', type=str, default='')
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--print_freq', type=int, default=10)
parser.add_argument('--save_dir', type=str, default='./save/representation')
parser.add_argument('--ckpt', type=str, default='',
help='path for pre-trained model')
parser.add_argument('--subnet', action='store_true',
help='measure the accuracy of sub-network or not')
# dataset
parser.add_argument('--dataset', type=str, default='imagenet', choices=['cifar10', 'cifar100', 'tinyimagenet', 'imagenet', 'imagenet100'])
parser.add_argument('--data_folder', type=str, default='datasets/')
parser.add_argument('--batch_size', type=int, default=256)
parser.add_argument('--num_workers', type=int, default=16)
# model
parser.add_argument('--model', type=str, default='resnet50')
parser.add_argument('--selfcon_pos', type=str, default='[False,False,False]',
help='where to augment the paths')
parser.add_argument('--selfcon_arch', type=str, default='resnet',
choices=['resnet', 'vgg', 'efficientnet', 'wrn'], help='which architecture to form a sub-network')
parser.add_argument('--selfcon_size', type=str, default='same',
choices=['fc', 'same', 'small'], help='argument for num_blocks of a sub-network')
# optimization
parser.add_argument('--epochs', type=int, default=100)
parser.add_argument('--learning_rate', type=float, default=0.1)
parser.add_argument('--lr_decay_epochs', type=str, default='60,75,90')
parser.add_argument('--lr_decay_rate', type=float, default=0.2)
parser.add_argument('--weight_decay', type=float, default=0)
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--cosine', action='store_true',
help='using cosine annealing')
parser.add_argument('--warm', action='store_true',
help='warm-up for large batch training')
opt = parser.parse_args()
iterations = opt.lr_decay_epochs.split(',')
opt.lr_decay_epochs = list([])
for it in iterations:
opt.lr_decay_epochs.append(int(it))
opt.model_name = '{}_{}_lr_{}_decay_{}_bsz_{}'.\
format(opt.dataset, opt.model, opt.learning_rate, opt.weight_decay,
opt.batch_size)
if opt.cosine:
opt.model_name = '{}_cosine'.format(opt.model_name)
# warm-up for large-batch training,
if opt.warm:
opt.model_name = '{}_warm'.format(opt.model_name)
opt.warmup_from = 0.01
opt.warm_epochs = 10
if opt.cosine:
eta_min = opt.learning_rate * (opt.lr_decay_rate ** 3)
opt.warmup_to = eta_min + (opt.learning_rate - eta_min) * (
1 + math.cos(math.pi * opt.warm_epochs / opt.epochs)) / 2
else:
opt.warmup_to = opt.learning_rate
if opt.dataset == 'cifar10':
opt.n_cls = 10
elif opt.dataset == 'cifar100':
opt.n_cls = 100
elif opt.dataset == 'tinyimagenet':
opt.n_cls = 200
elif opt.dataset == 'imagenet':
opt.n_cls = 1000
elif opt.dataset == 'imagenet100':
opt.n_cls = 100
else:
raise ValueError('dataset not supported: {}'.format(opt.dataset))
return opt
def set_loader(opt):
# construct data loader
if opt.dataset == 'cifar10':
mean = (0.4914, 0.4822, 0.4465)
std = (0.2023, 0.1994, 0.2010)
size = 32
elif opt.dataset == 'cifar100':
mean = (0.5071, 0.4867, 0.4408)
std = (0.2675, 0.2565, 0.2761)
size = 32
elif opt.dataset == 'tinyimagenet':
mean = (0.485, 0.456, 0.406)
std = (0.229, 0.224, 0.225)
size = 64
elif opt.dataset == 'imagenet':
mean = (0.485, 0.456, 0.406)
std = (0.229, 0.224, 0.225)
size = 224
elif opt.dataset == 'imagenet100':
mean = (0.485, 0.456, 0.406)
std = (0.229, 0.224, 0.225)
size = 224
else:
raise ValueError('dataset not supported: {}'.format(opt.dataset))
normalize = transforms.Normalize(mean=mean, std=std)
train_transform = transforms.Compose([
transforms.RandomResizedCrop(size=size, scale=(0.2, 1.)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
# if opt.randaug:
# train_transform.transforms.insert(0, RandAugment(2, 9))
if opt.dataset not in ['imagenet', 'imagenet100']:
val_transform = transforms.Compose([
transforms.ToTensor(),
normalize,
])
else:
val_transform = transforms.Compose([transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize])
if opt.dataset == 'cifar10':
train_dataset = datasets.CIFAR10(root=opt.data_folder,
transform=train_transform,
download=True)
val_dataset = datasets.CIFAR10(root=opt.data_folder,
train=False,
transform=val_transform)
elif opt.dataset == 'cifar100':
train_dataset = datasets.CIFAR100(root=opt.data_folder,
transform=train_transform,
download=True)
val_dataset = datasets.CIFAR100(root=opt.data_folder,
train=False,
transform=val_transform)
elif opt.dataset == 'tinyimagenet':
train_dataset = TinyImageNet(root=opt.data_folder,
transform=train_transform,
download=True)
val_dataset = TinyImageNet(root=opt.data_folder,
train=False,
transform=val_transform)
elif opt.dataset == 'imagenet':
traindir = os.path.join(opt.data_folder, 'train')
train_dataset = datasets.ImageFolder(root=traindir,
transform=train_transform)
valdir = os.path.join(opt.data_folder, 'val')
val_dataset = datasets.ImageFolder(root=valdir,
transform=val_transform)
elif opt.dataset == 'imagenet100':
traindir = os.path.join(opt.data_folder, 'train')
train_dataset = ImageNetSubset('./utils/imagenet100.txt',
root=traindir,
transform=train_transform)
valdir = os.path.join(opt.data_folder, 'val')
val_dataset = ImageNetSubset('./utils/imagenet100.txt',
root=valdir,
transform=val_transform)
else:
raise ValueError(opt.dataset)
train_sampler = None
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=opt.batch_size, shuffle=(train_sampler is None),
num_workers=opt.num_workers, pin_memory=True, sampler=train_sampler)
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=512, shuffle=False,
num_workers=8, pin_memory=True)
return train_loader, val_loader, train_sampler
def set_model(opt):
model_kwargs = {'name': opt.model,
'dataset': opt.dataset,
'selfcon_pos': eval(opt.selfcon_pos),
'selfcon_arch': opt.selfcon_arch,
'selfcon_size': opt.selfcon_size
}
if opt.model.startswith('resnet'):
model = ConResNet(**model_kwargs)
classifier = LinearClassifier(name=opt.model, num_classes=opt.n_cls)
if opt.subnet:
sub_classifier = LinearClassifier(name=opt.model, num_classes=opt.n_cls)
elif opt.model.startswith('vgg'):
model = ConVGG(**model_kwargs)
classifier = LinearClassifier_VGG(name=opt.model, num_classes=opt.n_cls)
if opt.subnet:
sub_classifier = LinearClassifier_VGG(name=opt.model, num_classes=opt.n_cls)
elif opt.model.startswith('wrn'):
model = ConWRN(**model_kwargs)
classifier = LinearClassifier_WRN(name=opt.model, num_classes=opt.n_cls)
if opt.subnet:
sub_classifier = LinearClassifier_WRN(name=opt.model, num_classes=opt.n_cls)
elif opt.model.startswith('eff'):
model = ConEfficientNet(**model_kwargs)
classifier = LinearClassifier_EFF(name=opt.model, num_classes=opt.n_cls)
if opt.subnet:
sub_classifier = LinearClassifier_EFF(name=opt.model, num_classes=opt.n_cls)
criterion = torch.nn.CrossEntropyLoss()
if opt.ckpt:
ckpt = torch.load(opt.ckpt, map_location='cpu')
state_dict = ckpt['model']
if torch.cuda.is_available():
if torch.cuda.device_count() > 1:
model.encoder = torch.nn.DataParallel(model.encoder)
else:
if opt.ckpt:
new_state_dict = {}
for k, v in state_dict.items():
k = k.replace("module.", "")
new_state_dict[k] = v
state_dict = new_state_dict
model.cuda()
classifier = classifier.cuda()
if opt.subnet:
sub_classifier = sub_classifier.cuda()
criterion = criterion.cuda()
cudnn.benchmark = True
if opt.ckpt:
state_dict = {k.replace("downsample", "shortcut"): v for k, v in state_dict.items()}
model.load_state_dict(state_dict, strict=False)
if not opt.subnet:
sub_classifier = None
return model, classifier, sub_classifier, criterion, opt
def train(train_loader, model, classifier, criterion, optimizer, epoch, opt, subnet=False):
"""one epoch training"""
model.eval()
classifier.train()
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
end = time.time()
for idx, (images, labels) in enumerate(train_loader):
data_time.update(time.time() - end)
images = images.cuda(non_blocking=True)
labels = labels.cuda(non_blocking=True)
bsz = labels.shape[0]
# warm-up learning rate
warmup_learning_rate(opt, epoch, idx, len(train_loader), optimizer)
# compute loss
with torch.no_grad():
features = model.encoder(images)
features = features[-1] if not subnet else features[0][-1]
output = classifier(features.detach())
loss = criterion(output, labels)
# update metric
losses.update(loss.item(), bsz)
acc1, acc5 = accuracy(output, labels, topk=(1, 5))
top1.update(acc1[0], bsz)
# SGD
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# print info
if (idx + 1) % opt.print_freq == 0:
print('Train: [{0}][{1}/{2}]\t'
'BT {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'DT {data_time.val:.3f} ({data_time.avg:.3f})\t'
'loss {loss.val:.3f} ({loss.avg:.3f})\t'
'Acc@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
epoch, idx + 1, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1))
sys.stdout.flush()
return losses.avg, top1.avg
def validate(val_loader, model, classifier, sub_classifier, criterion, opt, best_acc):
def __update_metric(output, labels, top1, top5, bsz):
acc1, acc5 = accuracy(output, labels, topk=(1, 5))
top1.update(acc1[0], bsz)
top5.update(acc5[0], bsz)
return top1, top5
def __best_acc(val_acc1, val_acc5, best_acc, key='backbone'):
if val_acc1.item() > best_acc[key][0]:
best_acc[key][0] = val_acc1.item()
best_acc[key][1] = val_acc5.item()
return best_acc
"""validation"""
model.eval()
classifier.eval()
if sub_classifier:
sub_classifier.eval()
batch_time = AverageMeter()
losses = AverageMeter()
top1, top5 = AverageMeter(), AverageMeter()
top1_sub, top5_sub = AverageMeter(), AverageMeter()
top1_ens, top5_ens = AverageMeter(), AverageMeter()
with torch.no_grad():
end = time.time()
for idx, (images, labels) in enumerate(val_loader):
images = images.float().cuda()
labels = labels.cuda()
bsz = labels.shape[0]
# forward
features = model.encoder(images)
output = classifier(features[-1])
loss = criterion(output, labels)
# for only one subnetwork
if opt.subnet:
sub_output = sub_classifier(features[0][-1])
ensemble_output = (output + sub_output) / 2
# update metric
losses.update(loss.item(), bsz)
top1, top5 = __update_metric(output, labels, top1, top5, bsz)
if opt.subnet:
top1_sub, top5_sub = __update_metric(sub_output, labels, top1_sub, top5_sub, bsz)
top1_ens, top5_ens = __update_metric(ensemble_output, labels, top1_ens, top5_ens, bsz)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if idx % opt.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Acc@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
idx, len(val_loader), batch_time=batch_time,
loss=losses, top1=top1))
print(' * Acc@1 {top1.avg:.2f}, Acc@5 {top5.avg:.2f}'.format(top1=top1, top5=top5))
best_acc = __best_acc(top1.avg, top5.avg, best_acc)
if opt.subnet:
print(' * Acc@1 {top1.avg:.2f}, Acc@5 {top5.avg:.2f}'.format(top1=top1_sub, top5=top5_sub))
best_acc = __best_acc(top1_sub.avg, top5_sub.avg, best_acc, key='sub')
print(' * Acc@1 {top1.avg:.2f}, Acc@5 {top5.avg:.2f}'.format(top1=top1_ens, top5=top5_ens))
best_acc = __best_acc(top1_ens.avg, top5_ens.avg, best_acc, key='ensemble')
return best_acc
def main():
opt = parse_option()
# fix seed
np.random.seed(opt.seed)
random.seed(opt.seed)
torch.manual_seed(opt.seed)
torch.cuda.manual_seed(opt.seed)
cudnn.deterministic = True
best_acc = {'backbone': [0, 0, 0],
'sub': [0, 0, 0],
'ensemble': [0, 0]}
# build model and criterion
model, classifier, sub_classifier, criterion, opt = set_model(opt)
# build data loader
train_loader, val_loader, train_sampler = set_loader(opt)
# build optimizer
optimizer = set_optimizer(opt, classifier)
sub_optimizer = set_optimizer(opt, sub_classifier) if opt.subnet else None
# training routine
for epoch in range(1, opt.epochs + 1):
adjust_learning_rate(opt, optimizer, epoch)
if opt.subnet:
adjust_learning_rate(opt, sub_optimizer, epoch)
# train for one epoch
time1 = time.time()
loss, acc = train(train_loader, model, classifier, criterion,
optimizer, epoch, opt)
time2 = time.time()
print('Train epoch {}, total time {:.2f}, accuracy:{:.2f}'.format(
epoch, time2 - time1, acc))
best_acc['backbone'][2] = acc.item()
if opt.subnet:
_, sub_acc = train(train_loader, model, sub_classifier, criterion,
sub_optimizer, epoch, opt, subnet=True)
print('Train epoch {}, accuracy:{:.2f}'.format(
epoch, sub_acc))
best_acc['sub'][2] = sub_acc.item()
# eval for one epoch
best_acc = validate(val_loader, model, classifier, sub_classifier, criterion, opt, best_acc)
update_json(opt.ckpt + '_%s' % opt.exp_name if opt.exp_name else opt.ckpt, best_acc, path='%s/results.json' % (opt.save_dir))
# for robustness experiments
method = 'supcon'
if not os.path.isdir('./robustness/ckpt'):
os.makedirs('./robustness/ckpt')
torch.save(model.state_dict(), './robustness/ckpt/{}_encoder.pth'.format(method))
torch.save(classifier.state_dict(), './robustness/ckpt/{}_classifier.pth'.format(method))
if __name__ == '__main__':
main()