-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgradio_app.py
102 lines (80 loc) · 7.52 KB
/
gradio_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import gradio as gr
import os
from PIL import Image
import subprocess
# check if there is a picture uploaded or selected
def check_img_input(control_image):
if control_image is None:
raise gr.Error("Please select or upload an input image")
def optimize_stage_1(image_block: Image.Image, preprocess_chk: bool, elevation_slider: float):
if not os.path.exists('tmp_data'):
os.makedirs('tmp_data')
if preprocess_chk:
# save image to a designated path
image_block.save(os.path.join('tmp_data', 'tmp.png'))
# preprocess image
print(f'python process.py {os.path.join("tmp_data", "tmp.png")}')
subprocess.run(f'python process.py {os.path.join("tmp_data", "tmp.png")}', shell=True)
else:
image_block.save(os.path.join('tmp_data', 'tmp_rgba.png'))
# stage 1
subprocess.run(f'python main.py --config {os.path.join("configs", "image.yaml")} input={os.path.join("tmp_data", "tmp_rgba.png")} save_path=tmp mesh_format=glb elevation={elevation_slider} force_cuda_rast=True', shell=True)
return os.path.join('logs', 'tmp_mesh.glb')
def optimize_stage_2(elevation_slider: float):
# stage 2
subprocess.run(f'python main2.py --config {os.path.join("configs", "image.yaml")} input={os.path.join("tmp_data", "tmp_rgba.png")} save_path=tmp mesh_format=glb elevation={elevation_slider} force_cuda_rast=True', shell=True)
return os.path.join('logs', 'tmp.glb')
if __name__ == "__main__":
_TITLE = '''DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation'''
_DESCRIPTION = '''
<div>
<a style="display:inline-block" href="https://dreamgaussian.github.io"><img src='https://img.shields.io/badge/public_website-8A2BE2'></a>
<a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2309.16653"><img src="https://img.shields.io/badge/2309.16653-f9f7f7?logo="></a>
<a style="display:inline-block; margin-left: .5em" href='https://github.com/dreamgaussian/dreamgaussian'><img src='https://img.shields.io/github/stars/dreamgaussian/dreamgaussian?style=social'/></a>
</div>
We present DreamGausssion, a 3D content generation framework that significantly improves the efficiency of 3D content creation.
'''
_IMG_USER_GUIDE = "Please upload an image in the block above (or choose an example above) and click **Generate 3D**."
# load images in 'data' folder as examples
example_folder = os.path.join(os.path.dirname(__file__), 'data')
example_fns = os.listdir(example_folder)
example_fns.sort()
examples_full = [os.path.join(example_folder, x) for x in example_fns if x.endswith('.png')]
# Compose demo layout & data flow
with gr.Blocks(title=_TITLE, theme=gr.themes.Soft()) as demo:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown('# ' + _TITLE)
gr.Markdown(_DESCRIPTION)
# Image-to-3D
with gr.Row(variant='panel'):
with gr.Column(scale=5):
image_block = gr.Image(type='pil', image_mode='RGBA', height=290, label='Input image', tool=None)
elevation_slider = gr.Slider(-90, 90, value=0, step=1, label='Estimated elevation angle')
gr.Markdown(
"default to 0 (horizontal), range from [-90, 90]. If you upload a look-down image, try a value like -30")
preprocess_chk = gr.Checkbox(True,
label='Preprocess image automatically (remove background and recenter object)')
gr.Examples(
examples=examples_full, # NOTE: elements must match inputs list!
inputs=[image_block],
outputs=[image_block],
cache_examples=False,
label='Examples (click one of the images below to start)',
examples_per_page=40
)
img_run_btn = gr.Button("Generate 3D")
img_guide_text = gr.Markdown(_IMG_USER_GUIDE, visible=True)
with gr.Column(scale=5):
obj3d_stage1 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model (Stage 1)")
obj3d = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model (Final)")
# if there is an input image, continue with inference
# else display an error message
img_run_btn.click(check_img_input, inputs=[image_block], queue=False).success(optimize_stage_1,
inputs=[image_block,
preprocess_chk,
elevation_slider],
outputs=[
obj3d_stage1]).success(
optimize_stage_2, inputs=[elevation_slider], outputs=[obj3d])
demo.queue().launch(share=True)