-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstreamlit_app.py
279 lines (234 loc) · 12.9 KB
/
streamlit_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
import streamlit_antd_components as sac
from datetime import date, timedelta
import httpx
import re
# Caching data loading
@st.cache_data
def load_data():
df = pd.read_csv('data/sap_cve_2025_aws.csv')
cwe_top_25 = pd.read_csv('data/cwe_top_25_2024.csv')
ll_cwe_t25 = list(cwe_top_25['ID'])
df['datePublished'] = pd.to_datetime(df['datePublished'], format='mixed', utc=True)
df['dateUpdated'] = pd.to_datetime(df['dateUpdated'], format='mixed', utc=True)
df['cwe_t25'] = df['cweId'].isin(ll_cwe_t25)
df.drop_duplicates(subset=['Note#'], inplace=True)
df['sap_note_year'] = df['sap_note_year'].astype('category')
df['year'] = pd.to_datetime(df['sap_note_year'], format='%Y', utc=True)
df['Note#'] = df['Note#'].astype('category')
df['priority'] = df['priority'].astype('category')
df['priority_l'] = df['priority_l'].astype('category')
df['Priority'] = df['Priority'].astype('category')
df['cvss_severity'] = df['cvss_severity'].astype('category')
df['kev'].fillna(False, inplace=True)
df['cveInfo'] = df['cve_id'].apply(lambda x: f'https://www.cvedetails.com/cve/{x}')
df['cveSAP'] = df['cve_id'].apply(lambda x: f'https://www.cve.org/CVERecord?id={x}')
df['epss'] = (df['epss'] * 100).astype('float').round(2)
return df
# Caching EPSS data fetching
@st.cache_data
def fetch_epss_data(cve):
r = httpx.get(f'https://api.first.org/data/v1/epss?cve={cve}&scope=time-series')
epss_ts = r.json()['data'][0]
return [float(l['epss'])*100 for l in reversed(epss_ts['time-series'])]
# Select A+|1+ CVEs & Get EPSS data of TOP Priorities CVEs
@st.cache_data
def sap_cve_top_priority(xdf):
#sap_cve_top = xdf[(xdf['priority_l'].isin(['A+', 'B'])) | (xdf['priority'] == 'Priority 1+')]
sap_cve_top = xdf[(xdf['priority_l'].isin(['A+'])) |
(xdf['priority'] == 'Priority 1+') |
(xdf['cvss'] > 7.5)]
col_epss_hist = [fetch_epss_data(row['cve_id']) for _, row in sap_cve_top.iterrows()]
return sap_cve_top, col_epss_hist
# Function to calculate EPSS trend
def calculate_epss_trend(epss_values, up_threshold=1.01, down_threshold=0.99):
if len(epss_values) < 2:
return 'stable'
first_val, last_val = epss_values[0], epss_values[-1]
if last_val > first_val * up_threshold:
return 'up'
elif last_val < first_val * down_threshold:
return 'down'
return 'stable'
# Function to calculate individual scores
def calculate_scores(row, kev_weight=3, cvss_multiplier=2, epss_up_multiplier=3, epss_stable_multiplier=2, cwe_weight=1.5):
kev_score = kev_weight if row['kev'] else 0
cvss_score = row['cvss'] * cvss_multiplier
epss_trend = calculate_epss_trend(row['epss_l_30'])
epss_avg = np.mean(row['epss_l_30']) if len(row['epss_l_30']) > 0 else 0
epss_score = epss_avg * (epss_up_multiplier if epss_trend == 'up' else epss_stable_multiplier if epss_trend == 'stable' else 1)
cwe_score = cwe_weight if row['cwe_t25'] else 0
priority_score = 1
return {
'epss_trend': epss_trend,
'epss_avg': epss_avg,
'kev_score': kev_score,
'cvss_score': cvss_score,
'epss_score': epss_score,
'cwe_score': cwe_score,
'priority_score': priority_score,
'composite_score': kev_score + cvss_score + epss_score + cwe_score + priority_score
}
# Main function to process the DataFrame and rank vulnerabilities
@st.cache_data
def process_vulnerability_data(ydf, kev_weight=3, cvss_multiplier=2, epss_up_multiplier=3, epss_stable_multiplier=2, cwe_weight=1.5):
score_columns = ydf.apply(
lambda row: calculate_scores(row, kev_weight, cvss_multiplier, epss_up_multiplier, epss_stable_multiplier, cwe_weight),
axis=1,
result_type='expand'
)
ydf = pd.concat([ydf, score_columns], axis=1)
return ydf.sort_values(by='composite_score', ascending=False)
# Streamlit app setup
st.set_page_config(
page_title="SAP Compass Vulns",
page_icon="assets/favicon.ico",
layout="wide",
initial_sidebar_state="collapsed",
)
# Load data
df = load_data()
# UI Components
st.logo("assets/logo.png", link="https://dub.sh/dso-days", icon_image="assets/logo.png")
sac.divider(label="<img height='96' width='96' src='https://cdn.simpleicons.org/SAP/white' /> Compass Priority Vulnerabilities", color='#ffffff')
# Sidebar
st.sidebar.markdown('<div style="text-align: center;">Last updated 14-01-2025</div>', unsafe_allow_html=True)
sentiment_mapping = [":red[:material/thumb_down:]", ":green[:material/thumb_up:]"]
st.sidebar.markdown('<div style="text-align: justify;"></br></br>How do you like this app?</div>', unsafe_allow_html=True)
selected = st.sidebar.feedback("thumbs")
if selected is not None:
st.sidebar.markdown(f'### You selected: {sentiment_mapping[selected]}')
st.sidebar.caption("Info and Details")
st.sidebar.caption(":blue[:material/neurology:] [SAP Vulnerabilities - CVE-IDs](https://dso-days-siteblog.vercel.app/blog/sap-cve-ids/)")
st.sidebar.caption(":blue[:material/neurology:] [SAP Vulnerabilities Summary 2024](https://dso-days-siteblog.vercel.app/blog/2024-sap-compass-vulns-summary/)")
# Main content
#st.html("<img height='96' width='96' src='https://cdn.simpleicons.org/SAP/white' />")
#st.title("SAP Compass Priority Vulnerabilities")
st.toast('New 2024 CWE Top 25 for Rethink process', icon=":material/emergency_heat:")
with st.expander("Vulnerability Summary 2021-2025", expanded=False, icon=":material/explore:"):
st.header(f"From January 2021 to date, :blue[{df.shape[0]} SAP Notes] related to :orange[{len(df['cve_id'].unique())} CVE-IDs] are reported.")
count_by_month = df.groupby([df['datePublished'].dt.to_period('M'), 'Priority']).size().reset_index(name='v')
count_by_month['cumulative_v'] = count_by_month.groupby('Priority')['v'].cumsum()
total_by_priority = count_by_month.groupby('Priority')['v'].sum().reset_index()
with st.container():
metrics = st.columns(4, gap='large')
for priority, color in zip(['Hot News', 'High', 'Medium', 'Low'], ['violet', 'red', 'orange', 'blue']):
value = total_by_priority.loc[total_by_priority['Priority'] == priority, 'v'].values[0]
metrics[['Hot News', 'High', 'Medium', 'Low'].index(priority)].metric(f":{color}[{priority}]", value=value)
st.divider()
# Filters
col1s, col2s, col3s = st.columns([2,2,1], vertical_alignment='center')
with col1s:
priority_filter = st.multiselect("Select SAP Priority Level", df['Priority'].unique(), default=df['Priority'].unique())
with col2s:
year_filter = st.multiselect("Select SAP Note Year", df['sap_note_year'].unique(), default=df['sap_note_year'].unique())
with col3s:
on = st.toggle(":blue[:material/neurology:] Rethink Priorities", key="on_rethink", help="Run process Rethink Priority Score")
filtered_df = df[df['Priority'].isin(priority_filter) & df['sap_note_year'].isin(year_filter)]
st.divider()
if on:
with st.container():
epss_h = sap_cve_top_priority(filtered_df)
sap_cve_top25 = epss_h[0].copy()
sap_cve_top25['epss_l_30'] = epss_h[1]
sap_cve_top25 = process_vulnerability_data(sap_cve_top25)
top = sap_cve_top25.shape[0]
top_vs = sap_cve_top25.drop_duplicates(subset=['cve_id'])
kev = top_vs[top_vs['kev']]
cweT25 = top_vs[top_vs['cwe_t25']]
tab1, tab2 = st.tabs(["Vunls Top Priority", "CVE Info"])
with tab1:
st.header(f":violet[Top {top}] Priority Vulnerabilities of :blue[{filtered_df.shape[0]}] selected SAP Notes")
st.header(f':orange[{top_vs.shape[0]}] Unique CVE-IDs & :red[{kev.shape[0]} on KEV]')
st.dataframe(
sap_cve_top25[['Note#','cve_id','Priority','priority_l','priority','cvss','kev','epss','cweId','cwe_t25','composite_score']],
column_config = {
"composite_score": st.column_config.NumberColumn("Score", help="Rethink Priority Score.", format="%.3f"),
},
hide_index=True,
)
# CVSS Distribution
chart_data = sap_cve_top25[["cvss","epss","cve_id","Note#"]]
fig = px.scatter(chart_data, x='cvss', y='epss', color_discrete_sequence=["#ff1493"],
labels={"cvss": "CVSS score", "epss": "EPSS %"})
fig.add_hline(y=25, line_color='grey', line_dash='dash',
annotation_text="Threshold EPSS: 25%", annotation_position="bottom right")
fig.add_vline(x=6.0, line_color='grey', line_dash='dash',
annotation_text="Threshold CVSS: 6.0", annotation_position="top right")
fig.update_layout(xaxis_title="CVSS Score", yaxis_title="EPSS %")
st.subheader("EPSS Score Distribution")
st.plotly_chart(fig, use_container_width=True)
with tab2:
st.subheader('CVE Details by Rethink Priority Score')
st.header(f':orange[{top_vs.shape[0]} CVE-IDs] | :red[{kev.shape[0]} on KEV] | :blue[{cweT25.shape[0]} on CWE Top 25]')
st.dataframe(
top_vs[['cveInfo','Priority','priority_l','priority','cweId','epss','cvss',
'cvss_severity','kev','sap_note_year','cwe_t25','epss_l_30','epss_trend',
'epss_avg','kev_score','cvss_score','epss_score','cwe_score','priority_score',
'composite_score','vendor','product_l','descriptions']],
column_config={
"cveInfo": st.column_config.LinkColumn("cveInfo", help="CVE Details", max_chars=50, display_text=r"(CVE-....-\d+)", pinned=True),
"epss_l_30": st.column_config.AreaChartColumn("EPSS (Last 30 days)", y_min=0, y_max=100),
"composite_score": st.column_config.NumberColumn("Score", help="Rethink Priority Score.", format="%.2f"),
},
hide_index=True
)
st.subheader('Treemap Score Priorities')
fig_tm = px.treemap(top_vs, path=[px.Constant("CVE Details"), 'Priority', 'sap_note_year', 'priority', 'priority_l'], values='composite_score')
fig_tm.update_traces(marker_colorscale=['#5eadf2','#3b2e8c','#04adbf','#ba38f2','#ff1493'])
fig_tm.update_layout(margin = dict(t=50, l=25, r=25, b=25))
st.plotly_chart(fig_tm, theme=None, use_container_width=True)
st.divider()
st.header(f":violet[{filtered_df.shape[0]}] Selected Vulnerabilities")
st.dataframe(
filtered_df[['Note#', 'cveInfo', 'cveSAP', 'Priority', 'priority_l', 'priority', 'epss', 'cvss', 'product_l']],
column_config={
"epss": st.column_config.NumberColumn("EPSS %", help="Probabilidad para explotar la vulnerabilidad."),
"cveInfo": st.column_config.LinkColumn("cveInfo", help="CVE Details", max_chars=50, display_text=r"(CVE-....-\d+)"),
"cveSAP": st.column_config.LinkColumn("cveSAP", help="CVE SAP Details", max_chars=50, display_text=r"(CVE-....-\d+)"),
},
hide_index=True
)
col1, col2 = st.columns(2, vertical_alignment="bottom")
with col1:
# Show CVSS Distribution
st.subheader("EPSS Score Distribution")
chart_data = filtered_df[["cvss","epss","cve_id","Note#"]]
st.scatter_chart(chart_data,
y="epss",
x="cvss",
x_label="CVSS Score",
y_label="EPSS %",
color="#ff1493",
use_container_width=True)
with col2:
# Potentially Display another chart (like by date)
st.subheader("Vulns Year Published")
filtered_df['yp'] = filtered_df['datePublished'].values.astype('datetime64[Y]')
count_by_date = filtered_df.groupby(filtered_df['yp'].dt.date).size().reset_index(name='count')
print(count_by_date)
st.bar_chart(count_by_date, y="count", x="yp", x_label="CVE Year Published",
color="#ba38f2", use_container_width=True)
st.subheader("Parallel Category Diagram")
dfp = filtered_df[['sap_note_year','year','priority_l','priority','Priority','cvss_severity']]
#dfp['team'] = pd.factorize(dfp['year'])[0].astype('int')
fig_parallel = px.parallel_categories(
dfp, dimensions=['sap_note_year','Priority','cvss_severity','priority_l','priority'],
labels={'sap_note_year':'Year',
'priority_l':'SploitScan',
'priority':'CVE-Prioritizer',
'Priority':'SAP',
'cvss_severity':'cvssSeverity'},
color=dfp['sap_note_year'],
#range_color=year_c[1]) '#4e79a7' #5f45bf '#3b2e8c' #5eadf2
color_continuous_scale=['#5eadf2','#3b2e8c','#ba38f2','#ff1493'],
color_continuous_midpoint=2022)
st.plotly_chart(fig_parallel, theme=None, use_container_width=True)
st.divider()
with st.expander("Dataset SAP Vulnerabilities"):
st.subheader("Dataset Raw")
st.write(df)