forked from ml-explore/mlx-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
jax_main.py
83 lines (65 loc) · 2.25 KB
/
jax_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# Copyright © 2023 Apple Inc.
import functools
import time
import jax
import jax.numpy as jnp
import mnist
def init_model(key, num_layers, input_dim, hidden_dim, output_dim):
params = []
layer_sizes = [hidden_dim] * num_layers
for idim, odim in zip([input_dim] + layer_sizes, layer_sizes + [output_dim]):
key, wk = jax.random.split(key, 2)
W = 1e-2 * jax.random.normal(wk, (idim, odim))
b = jnp.zeros((odim,))
params.append((W, b))
return params
def feed_forward(params, X):
for W, b in params[:-1]:
X = jnp.maximum(X @ W + b, 0)
W, b = params[-1]
return X @ W + b
def loss_fn(params, X, y):
logits = feed_forward(params, X)
logits = jax.nn.log_softmax(logits, 1)
return -jnp.mean(logits[jnp.arange(y.size), y])
@jax.jit
def eval_fn(params, X, y):
logits = feed_forward(params, X)
return jnp.mean(jnp.argmax(logits, axis=1) == y)
def batch_iterate(key, batch_size, X, y):
perm = jax.random.permutation(key, y.size)
for s in range(0, y.size, batch_size):
ids = perm[s : s + batch_size]
yield X[ids], y[ids]
if __name__ == "__main__":
seed = 0
num_layers = 2
hidden_dim = 32
num_classes = 10
batch_size = 256
num_epochs = 10
learning_rate = 1e-1
dataset = "mnist"
# Load the data
train_images, train_labels, test_images, test_labels = getattr(mnist, dataset)()
# Load the model
key, subkey = jax.random.split(jax.random.PRNGKey(seed))
params = init_model(
subkey, num_layers, train_images.shape[-1], hidden_dim, num_classes
)
loss_and_grad_fn = jax.jit(jax.value_and_grad(loss_fn))
update_fn = jax.jit(
functools.partial(jax.tree_map, lambda p, g: p - learning_rate * g)
)
for e in range(num_epochs):
tic = time.perf_counter()
key, subkey = jax.random.split(key)
for X, y in batch_iterate(subkey, batch_size, train_images, train_labels):
loss, grads = loss_and_grad_fn(params, X, y)
params = update_fn(params, grads)
accuracy = eval_fn(params, test_images, test_labels)
toc = time.perf_counter()
print(
f"Epoch {e}: Test accuracy {accuracy.item():.3f},"
f" Time {toc - tic:.3f} (s)"
)