-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBPM_MT.py
207 lines (146 loc) · 7.92 KB
/
BPM_MT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import json
import torch
import torch.nn as nn
import torch.nn.functional as F
class CrossAttentionLayer(nn.Module):
def __init__(self, d_model, nhead):
super(CrossAttentionLayer, self).__init__()
self.self_attn = nn.MultiheadAttention(d_model, nhead, batch_first=True)
self.dropout = nn.Dropout(0.5) ################### 0.5
self.norm_1 = nn.LayerNorm(d_model)
self.ffn_1 = nn.Linear(d_model, d_model * 4)
self.ffn_2 = nn.Linear(d_model * 4, d_model)
self.norm_2 = nn.LayerNorm(d_model)
def forward(self, x, y):
x = self.norm_1(x)
y = self.norm_1(y)
x2, _ = self.self_attn(x, y, y)
x = x + x2
x = self.norm_2(x)
x2 = self.ffn_1(self.dropout(x))
x2 = F.relu(x2)
x2 = self.ffn_2(self.dropout(x2))
x = x + x2
return x
class BPM_MT(nn.Module):
def __init__(self, language_model=None, audio_model=None, sentiment_dict = None, output_size=128, num_class=4, sentiment_output_size=64, dropout=0.5):#########0.5
super(BPM_MT, self).__init__()
self.register_module("language_model", language_model)
# if bert and vocab are not provided, raise an error
assert self.language_model is not None, "bert and vocab must be provided"
self.sentiment_dict = sentiment_dict
self.is_MT = self.sentiment_dict is not None
self.register_module("audio_model", audio_model)
# define the LSTM layer, 4 of layers
self.audio_feature_size = audio_model.get_feature_size() # 768
self.dropout = nn.Dropout(dropout)
# FC layer that has 128 of nodes which fed concatenated feature of audio and text
# self.fc_layer_1 = nn.Linear(77568, output_size)
## FLATTEN
# self.fc_layer_1 = nn.Linear(768*84, output_size*16) # 77568
# self.fc_layer_2 = nn.Linear(output_size * 16, output_size * 4)
# self.fc_layer_3 = nn.Linear(output_size * 4, output_size)
## AVGPOOL
self.fc_layer_1 = nn.Linear(768, 128) # 77568
##self.fc_layer_2 = nn.Linear(256, 128)
## self.fc_layer_3 = nn.Linear(768, output_size)
self.relu = nn.ReLU()
self.classifier = nn.Linear(output_size, num_class) # 128 -> 2
# FC layer that has 64 of nodes which fed the text feature
# FC layer that has 5 of nodes which fed the sentiment feature
## if self.is_MT:
## self.sentiment_fc_layer_1 = nn.Linear(768, sentiment_output_size)
## self.sentiment_relu = nn.ReLU()
## self.sentiment_classifier = nn.Linear(sentiment_output_size, 5)
## self.audio_downproject = nn.Linear(self.audio_feature_size, 512) # 768 -> 512
## self.text_downproject = nn.Linear(768, 512) # 768 -> 512
self.encoder = nn.Sequential(*[nn.TransformerEncoderLayer(d_model=768, nhead=8, batch_first=True) for _ in range(8)]) ############ 6 / 2
# self.audio_to_text_attention = nn.Sequential(*[CrossAttentionLayer(d_model=768, nhead=8) for _ in range(4)])
# self.audio_mask = nn.Parameter(torch.zeros(1, 1, 768)) # mask 위치 0으로
# self.text_to_audio_attention = nn.Sequential(*[CrossAttentionLayer(d_model=768, nhead=8) for _ in range(4)])
# self.text_mask = nn.Parameter(torch.zeros(1, 1, 768)) # mask 위치 0으로
self.full_mask = nn.Parameter(torch.zeros(1, 1, 768))
# self.audio_decoder = nn.Sequential(*[nn.TransformerEncoderLayer(d_model=512, nhead=8, batch_first=True) for _ in range(2)])
# self.text_decoder = nn.Sequential(*[nn.TransformerEncoderLayer(d_model=512, nhead=8, batch_first=True) for _ in range(2)])
self.audio_decoder = nn.Sequential(*[CrossAttentionLayer(d_model=192, nhead=2) for _ in range(2)])
self.text_decoder = nn.Sequential(*[CrossAttentionLayer(d_model=192, nhead=2) for _ in range(2)])
## self.audio_upproject = nn.Linear(512, self.audio_feature_size)
## self.text_upproject = nn.Linear(512, 768)
####### self.audio_upproject = nn.Linear(192, 768)
####### self.text_upproject = nn.Linear(192, 768)
self.full_downproject = nn.Linear(768, 192)
self.audio_downproject = nn.Linear(768, 192)
self.text_downproject = nn.Linear(768, 192)
self.audio_predictor = nn.Linear(192*74, 24000)
self.text_predictor = nn.Linear(192, 30522)
def pretext_forward(self, x):
audio = x["audio"]
text = x["text"]
audio = audio.squeeze(1)
original_audio = audio.clone()
original_text = text.clone()
batch_size = audio.size(0)
y = {}
text = self.language_model(text).last_hidden_state # B, 64, 768
audio = self.audio_model(audio) # B, 74, 768
full = torch.cat((text, audio), dim = 1) # B, 138, 768
original_full = full.clone()
####### original_audio = audio.clone()
####### original_text = text.clone()
masked_full = torch.rand_like(full.mean(-1)) < 0.15
# masked_audio = torch.rand_like(audio.mean(-1))<0.70
# masked_text = torch.rand_like(text.mean(-1))<0.40
# audio[masked_audio] = self.audio_mask
# text[masked_text] = self.text_mask
## visible_full = (masked_full == False)
full[masked_full] = self.full_mask
## visible_tokens = full[visible_full] # B, ??, 768
## n_tokens = visible_tokens.size(1)
# for layer in self.encoder:
# visible_tokens = layer(visible_tokens)
full = self.encoder(full)
## full[visible_full] = visible_tokens
encoded_text = full[:,:10,:]
encoded_audio = full[:,10:,:]
encoded_audio = self.audio_downproject(encoded_audio)
encoded_text = self.text_downproject(encoded_text)
full = self.full_downproject(full)
for layer in self.audio_decoder:
encoded_audio = layer(encoded_audio, full)
for layer in self.text_decoder:
encoded_text = layer(encoded_text, full)
####### audio = self.audio_upproject(encoded_audio)
####### text = self.text_upproject(encoded_text)
audio = self.audio_predictor(encoded_audio.flatten(start_dim=1))
text = self.text_predictor(encoded_text)
self.pretext_loss = F.mse_loss(audio, original_audio) + F.cross_entropy(text.transpose(-1,-2), original_text)
####### audio = audio.reshape(batch_size,-1)
####### text = text.reshape(batch_size,-1)
####### original_audio = original_audio.reshape(batch_size,-1)
####### original_text = original_text.reshape(batch_size,-1)
####### target_a = torch.ones(batch_size).to("cuda:0")
####### target_b = torch.ones(batch_size).to("cuda:0")
####### loss = torch.nn.CosineEmbeddingLoss()
####### self.pretext_loss = loss(audio, original_audio, target_a) + loss(text, original_text, target_b)
return self.pretext_loss
def forward(self, x):
audio = x["audio"]
text = x["text"]
text = self.language_model(text).last_hidden_state
audio = self.audio_model(audio)
y = {}
x = torch.cat((audio, text), dim=1)
x = self.encoder(x)
## print(x.shape)
## x = x.flatten(start_dim=1)
x = torch.nn.functional.avg_pool2d(x, kernel_size=(84,1))
x = x.squeeze(1)
# print(x.shape)
x = self.fc_layer_1(self.dropout(x))
x = self.relu(x)
## x = self.fc_layer_2(self.dropout(x))
## x = self.relu(x)
## x = self.fc_layer_3(self.dropout(x))
## x = self.relu(x)
y["logit"] = self.classifier(self.dropout(x))
return y