-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathreward_model.py
719 lines (574 loc) · 28 KB
/
reward_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data as data
import torch.optim as optim
import itertools
import tqdm
import copy
import scipy.stats as st
import os
import time
from scipy.stats import norm
device = 'cuda'
def gen_net(in_size=1, out_size=1, H=128, n_layers=3, activation='tanh'):
net = []
for i in range(n_layers):
net.append(nn.Linear(in_size, H))
net.append(nn.LeakyReLU())
in_size = H
net.append(nn.Linear(in_size, out_size))
if activation == 'tanh':
net.append(nn.Tanh())
elif activation == 'sig':
net.append(nn.Sigmoid())
else:
net.append(nn.ReLU())
return net
def KCenterGreedy(obs, full_obs, num_new_sample):
selected_index = []
current_index = list(range(obs.shape[0]))
new_obs = obs
new_full_obs = full_obs
start_time = time.time()
for count in range(num_new_sample):
dist = compute_smallest_dist(new_obs, new_full_obs)
max_index = torch.argmax(dist)
max_index = max_index.item()
if count == 0:
selected_index.append(max_index)
else:
selected_index.append(current_index[max_index])
current_index = current_index[0:max_index] + current_index[max_index+1:]
new_obs = obs[current_index]
new_full_obs = np.concatenate([
full_obs,
obs[selected_index]],
axis=0)
return selected_index
def compute_smallest_dist(obs, full_obs):
obs = torch.from_numpy(obs).float()
full_obs = torch.from_numpy(full_obs).float()
batch_size = 100
with torch.no_grad():
total_dists = []
for full_idx in range(len(obs) // batch_size + 1):
full_start = full_idx * batch_size
if full_start < len(obs):
full_end = (full_idx + 1) * batch_size
dists = []
for idx in range(len(full_obs) // batch_size + 1):
start = idx * batch_size
if start < len(full_obs):
end = (idx + 1) * batch_size
dist = torch.norm(
obs[full_start:full_end, None, :].to(device) - full_obs[None, start:end, :].to(device), dim=-1, p=2
)
dists.append(dist)
dists = torch.cat(dists, dim=1)
small_dists = torch.torch.min(dists, dim=1).values
total_dists.append(small_dists)
total_dists = torch.cat(total_dists)
return total_dists.unsqueeze(1)
class RewardModel:
def __init__(self, ds, da,
ensemble_size=3, lr=3e-4, mb_size = 128, size_segment=1,
env_maker=None, max_size=100, activation='tanh', capacity=5e5,
large_batch=1, label_margin=0.0,
teacher_beta=-1, teacher_gamma=1,
teacher_eps_mistake=0,
teacher_eps_skip=0,
teacher_eps_equal=0):
# train data is trajectories, must process to sa and s..
self.ds = ds
self.da = da
self.de = ensemble_size
self.lr = lr
self.ensemble = []
self.paramlst = []
self.opt = None
self.model = None
self.max_size = max_size
self.activation = activation
self.size_segment = size_segment
self.capacity = int(capacity)
self.buffer_seg1 = np.empty((self.capacity, size_segment, self.ds+self.da), dtype=np.float32)
self.buffer_seg2 = np.empty((self.capacity, size_segment, self.ds+self.da), dtype=np.float32)
self.buffer_label = np.empty((self.capacity, 1), dtype=np.float32)
self.buffer_index = 0
self.buffer_full = False
self.construct_ensemble()
self.inputs = []
self.targets = []
self.raw_actions = []
self.img_inputs = []
self.mb_size = mb_size
self.origin_mb_size = mb_size
self.train_batch_size = 128
self.CEloss = nn.CrossEntropyLoss()
self.running_means = []
self.running_stds = []
self.best_seg = []
self.best_label = []
self.best_action = []
self.large_batch = large_batch
# new teacher
self.teacher_beta = teacher_beta
self.teacher_gamma = teacher_gamma
self.teacher_eps_mistake = teacher_eps_mistake
self.teacher_eps_equal = teacher_eps_equal
self.teacher_eps_skip = teacher_eps_skip
self.teacher_thres_skip = 0
self.teacher_thres_equal = 0
self.label_margin = label_margin
self.label_target = 1 - 2*self.label_margin
def softXEnt_loss(self, input, target):
logprobs = torch.nn.functional.log_softmax (input, dim = 1)
return -(target * logprobs).sum() / input.shape[0]
def change_batch(self, new_frac):
self.mb_size = int(self.origin_mb_size*new_frac)
def set_batch(self, new_batch):
self.mb_size = int(new_batch)
def set_teacher_thres_skip(self, new_margin):
self.teacher_thres_skip = new_margin * self.teacher_eps_skip
def set_teacher_thres_equal(self, new_margin):
self.teacher_thres_equal = new_margin * self.teacher_eps_equal
def construct_ensemble(self):
for i in range(self.de):
model = nn.Sequential(*gen_net(in_size=self.ds+self.da,
out_size=1, H=256, n_layers=3,
activation=self.activation)).float().to(device)
self.ensemble.append(model)
self.paramlst.extend(model.parameters())
self.opt = torch.optim.Adam(self.paramlst, lr = self.lr)
def add_data(self, obs, act, rew, done):
sa_t = np.concatenate([obs, act], axis=-1)
r_t = rew
flat_input = sa_t.reshape(1, self.da+self.ds)
r_t = np.array(r_t)
flat_target = r_t.reshape(1, 1)
init_data = len(self.inputs) == 0
if init_data:
self.inputs.append(flat_input)
self.targets.append(flat_target)
elif done:
self.inputs[-1] = np.concatenate([self.inputs[-1], flat_input])
self.targets[-1] = np.concatenate([self.targets[-1], flat_target])
# FIFO
if len(self.inputs) > self.max_size:
self.inputs = self.inputs[1:]
self.targets = self.targets[1:]
self.inputs.append([])
self.targets.append([])
else:
if len(self.inputs[-1]) == 0:
self.inputs[-1] = flat_input
self.targets[-1] = flat_target
else:
self.inputs[-1] = np.concatenate([self.inputs[-1], flat_input])
self.targets[-1] = np.concatenate([self.targets[-1], flat_target])
def add_data_batch(self, obses, rewards):
num_env = obses.shape[0]
for index in range(num_env):
self.inputs.append(obses[index])
self.targets.append(rewards[index])
def get_rank_probability(self, x_1, x_2):
# get probability x_1 > x_2
probs = []
for member in range(self.de):
probs.append(self.p_hat_member(x_1, x_2, member=member).cpu().numpy())
probs = np.array(probs)
return np.mean(probs, axis=0), np.std(probs, axis=0)
def get_entropy(self, x_1, x_2):
# get probability x_1 > x_2
probs = []
for member in range(self.de):
probs.append(self.p_hat_entropy(x_1, x_2, member=member).cpu().numpy())
probs = np.array(probs)
return np.mean(probs, axis=0), np.std(probs, axis=0)
def p_hat_member(self, x_1, x_2, member=-1):
# softmaxing to get the probabilities according to eqn 1
with torch.no_grad():
r_hat1 = self.r_hat_member(x_1, member=member)
r_hat2 = self.r_hat_member(x_2, member=member)
r_hat1 = r_hat1.sum(axis=1)
r_hat2 = r_hat2.sum(axis=1)
r_hat = torch.cat([r_hat1, r_hat2], axis=-1)
# taking 0 index for probability x_1 > x_2
return F.softmax(r_hat, dim=-1)[:,0]
def p_hat_entropy(self, x_1, x_2, member=-1):
# softmaxing to get the probabilities according to eqn 1
with torch.no_grad():
r_hat1 = self.r_hat_member(x_1, member=member)
r_hat2 = self.r_hat_member(x_2, member=member)
r_hat1 = r_hat1.sum(axis=1)
r_hat2 = r_hat2.sum(axis=1)
r_hat = torch.cat([r_hat1, r_hat2], axis=-1)
ent = F.softmax(r_hat, dim=-1) * F.log_softmax(r_hat, dim=-1)
ent = ent.sum(axis=-1).abs()
return ent
def r_hat_member(self, x, member=-1):
# the network parameterizes r hat in eqn 1 from the paper
return self.ensemble[member](torch.from_numpy(x).float().to(device))
def r_hat(self, x):
# they say they average the rewards from each member of the ensemble, but I think this only makes sense if the rewards are already normalized
# but I don't understand how the normalization should be happening right now :(
r_hats = []
for member in range(self.de):
r_hats.append(self.r_hat_member(x, member=member).detach().cpu().numpy())
r_hats = np.array(r_hats)
return np.mean(r_hats)
def r_hat_batch(self, x):
# they say they average the rewards from each member of the ensemble, but I think this only makes sense if the rewards are already normalized
# but I don't understand how the normalization should be happening right now :(
r_hats = []
for member in range(self.de):
r_hats.append(self.r_hat_member(x, member=member).detach().cpu().numpy())
r_hats = np.array(r_hats)
return np.mean(r_hats, axis=0)
def save(self, model_dir, step):
for member in range(self.de):
torch.save(
self.ensemble[member].state_dict(), '%s/reward_model_%s_%s.pt' % (model_dir, step, member)
)
def load(self, model_dir, step):
for member in range(self.de):
self.ensemble[member].load_state_dict(
torch.load('%s/reward_model_%s_%s.pt' % (model_dir, step, member))
)
def get_train_acc(self):
ensemble_acc = np.array([0 for _ in range(self.de)])
max_len = self.capacity if self.buffer_full else self.buffer_index
total_batch_index = np.random.permutation(max_len)
batch_size = 256
num_epochs = int(np.ceil(max_len/batch_size))
total = 0
for epoch in range(num_epochs):
last_index = (epoch+1)*batch_size
if (epoch+1)*batch_size > max_len:
last_index = max_len
sa_t_1 = self.buffer_seg1[epoch*batch_size:last_index]
sa_t_2 = self.buffer_seg2[epoch*batch_size:last_index]
labels = self.buffer_label[epoch*batch_size:last_index]
labels = torch.from_numpy(labels.flatten()).long().to(device)
total += labels.size(0)
for member in range(self.de):
# get logits
r_hat1 = self.r_hat_member(sa_t_1, member=member)
r_hat2 = self.r_hat_member(sa_t_2, member=member)
r_hat1 = r_hat1.sum(axis=1)
r_hat2 = r_hat2.sum(axis=1)
r_hat = torch.cat([r_hat1, r_hat2], axis=-1)
_, predicted = torch.max(r_hat.data, 1)
correct = (predicted == labels).sum().item()
ensemble_acc[member] += correct
ensemble_acc = ensemble_acc / total
return np.mean(ensemble_acc)
def get_queries(self, mb_size=20):
len_traj, max_len = len(self.inputs[0]), len(self.inputs)
img_t_1, img_t_2 = None, None
if len(self.inputs[-1]) < len_traj:
max_len = max_len - 1
# get train traj
train_inputs = np.array(self.inputs[:max_len])
train_targets = np.array(self.targets[:max_len])
batch_index_2 = np.random.choice(max_len, size=mb_size, replace=True)
sa_t_2 = train_inputs[batch_index_2] # Batch x T x dim of s&a
r_t_2 = train_targets[batch_index_2] # Batch x T x 1
batch_index_1 = np.random.choice(max_len, size=mb_size, replace=True)
sa_t_1 = train_inputs[batch_index_1] # Batch x T x dim of s&a
r_t_1 = train_targets[batch_index_1] # Batch x T x 1
sa_t_1 = sa_t_1.reshape(-1, sa_t_1.shape[-1]) # (Batch x T) x dim of s&a
r_t_1 = r_t_1.reshape(-1, r_t_1.shape[-1]) # (Batch x T) x 1
sa_t_2 = sa_t_2.reshape(-1, sa_t_2.shape[-1]) # (Batch x T) x dim of s&a
r_t_2 = r_t_2.reshape(-1, r_t_2.shape[-1]) # (Batch x T) x 1
# Generate time index
time_index = np.array([list(range(i*len_traj,
i*len_traj+self.size_segment)) for i in range(mb_size)])
time_index_2 = time_index + np.random.choice(len_traj-self.size_segment, size=mb_size, replace=True).reshape(-1,1)
time_index_1 = time_index + np.random.choice(len_traj-self.size_segment, size=mb_size, replace=True).reshape(-1,1)
sa_t_1 = np.take(sa_t_1, time_index_1, axis=0) # Batch x size_seg x dim of s&a
r_t_1 = np.take(r_t_1, time_index_1, axis=0) # Batch x size_seg x 1
sa_t_2 = np.take(sa_t_2, time_index_2, axis=0) # Batch x size_seg x dim of s&a
r_t_2 = np.take(r_t_2, time_index_2, axis=0) # Batch x size_seg x 1
return sa_t_1, sa_t_2, r_t_1, r_t_2
def put_queries(self, sa_t_1, sa_t_2, labels):
total_sample = sa_t_1.shape[0]
next_index = self.buffer_index + total_sample
if next_index >= self.capacity:
self.buffer_full = True
maximum_index = self.capacity - self.buffer_index
np.copyto(self.buffer_seg1[self.buffer_index:self.capacity], sa_t_1[:maximum_index])
np.copyto(self.buffer_seg2[self.buffer_index:self.capacity], sa_t_2[:maximum_index])
np.copyto(self.buffer_label[self.buffer_index:self.capacity], labels[:maximum_index])
remain = total_sample - (maximum_index)
if remain > 0:
np.copyto(self.buffer_seg1[0:remain], sa_t_1[maximum_index:])
np.copyto(self.buffer_seg2[0:remain], sa_t_2[maximum_index:])
np.copyto(self.buffer_label[0:remain], labels[maximum_index:])
self.buffer_index = remain
else:
np.copyto(self.buffer_seg1[self.buffer_index:next_index], sa_t_1)
np.copyto(self.buffer_seg2[self.buffer_index:next_index], sa_t_2)
np.copyto(self.buffer_label[self.buffer_index:next_index], labels)
self.buffer_index = next_index
def get_label(self, sa_t_1, sa_t_2, r_t_1, r_t_2):
sum_r_t_1 = np.sum(r_t_1, axis=1)
sum_r_t_2 = np.sum(r_t_2, axis=1)
# skip the query
if self.teacher_thres_skip > 0:
max_r_t = np.maximum(sum_r_t_1, sum_r_t_2)
max_index = (max_r_t > self.teacher_thres_skip).reshape(-1)
if sum(max_index) == 0:
return None, None, None, None, []
sa_t_1 = sa_t_1[max_index]
sa_t_2 = sa_t_2[max_index]
r_t_1 = r_t_1[max_index]
r_t_2 = r_t_2[max_index]
sum_r_t_1 = np.sum(r_t_1, axis=1)
sum_r_t_2 = np.sum(r_t_2, axis=1)
# equally preferable
margin_index = (np.abs(sum_r_t_1 - sum_r_t_2) < self.teacher_thres_equal).reshape(-1)
# perfectly rational
seg_size = r_t_1.shape[1]
temp_r_t_1 = r_t_1.copy()
temp_r_t_2 = r_t_2.copy()
for index in range(seg_size-1):
temp_r_t_1[:,:index+1] *= self.teacher_gamma
temp_r_t_2[:,:index+1] *= self.teacher_gamma
sum_r_t_1 = np.sum(temp_r_t_1, axis=1)
sum_r_t_2 = np.sum(temp_r_t_2, axis=1)
rational_labels = 1*(sum_r_t_1 < sum_r_t_2)
if self.teacher_beta > 0: # Bradley-Terry rational model
r_hat = torch.cat([torch.Tensor(sum_r_t_1),
torch.Tensor(sum_r_t_2)], axis=-1)
r_hat = r_hat*self.teacher_beta
ent = F.softmax(r_hat, dim=-1)[:, 1]
labels = torch.bernoulli(ent).int().numpy().reshape(-1, 1)
else:
labels = rational_labels
# making a mistake
len_labels = labels.shape[0]
rand_num = np.random.rand(len_labels)
noise_index = rand_num <= self.teacher_eps_mistake
labels[noise_index] = 1 - labels[noise_index]
# equally preferable
labels[margin_index] = -1
return sa_t_1, sa_t_2, r_t_1, r_t_2, labels
def kcenter_sampling(self):
# get queries
num_init = self.mb_size*self.large_batch
sa_t_1, sa_t_2, r_t_1, r_t_2 = self.get_queries(
mb_size=num_init)
# get final queries based on kmeans clustering
temp_sa_t_1 = sa_t_1[:,:,:self.ds]
temp_sa_t_2 = sa_t_2[:,:,:self.ds]
temp_sa = np.concatenate([temp_sa_t_1.reshape(num_init, -1),
temp_sa_t_2.reshape(num_init, -1)], axis=1)
max_len = self.capacity if self.buffer_full else self.buffer_index
tot_sa_1 = self.buffer_seg1[:max_len, :, :self.ds]
tot_sa_2 = self.buffer_seg2[:max_len, :, :self.ds]
tot_sa = np.concatenate([tot_sa_1.reshape(max_len, -1),
tot_sa_2.reshape(max_len, -1)], axis=1)
selected_index = KCenterGreedy(temp_sa, tot_sa, self.mb_size)
r_t_1, sa_t_1 = r_t_1[selected_index], sa_t_1[selected_index]
r_t_2, sa_t_2 = r_t_2[selected_index], sa_t_2[selected_index]
# get labels
sa_t_1, sa_t_2, r_t_1, r_t_2, labels = self.get_label(
sa_t_1, sa_t_2, r_t_1, r_t_2)
if len(labels) > 0:
self.put_queries(sa_t_1, sa_t_2, labels)
return len(labels)
def kcenter_disagree_sampling(self):
num_init = self.mb_size*self.large_batch
num_init_half = int(num_init*0.5)
# get queries
sa_t_1, sa_t_2, r_t_1, r_t_2 = self.get_queries(
mb_size=num_init)
# get final queries based on uncertainty
_, disagree = self.get_rank_probability(sa_t_1, sa_t_2)
top_k_index = (-disagree).argsort()[:num_init_half]
r_t_1, sa_t_1 = r_t_1[top_k_index], sa_t_1[top_k_index]
r_t_2, sa_t_2 = r_t_2[top_k_index], sa_t_2[top_k_index]
# get final queries based on kmeans clustering
temp_sa_t_1 = sa_t_1[:,:,:self.ds]
temp_sa_t_2 = sa_t_2[:,:,:self.ds]
temp_sa = np.concatenate([temp_sa_t_1.reshape(num_init_half, -1),
temp_sa_t_2.reshape(num_init_half, -1)], axis=1)
max_len = self.capacity if self.buffer_full else self.buffer_index
tot_sa_1 = self.buffer_seg1[:max_len, :, :self.ds]
tot_sa_2 = self.buffer_seg2[:max_len, :, :self.ds]
tot_sa = np.concatenate([tot_sa_1.reshape(max_len, -1),
tot_sa_2.reshape(max_len, -1)], axis=1)
selected_index = KCenterGreedy(temp_sa, tot_sa, self.mb_size)
r_t_1, sa_t_1 = r_t_1[selected_index], sa_t_1[selected_index]
r_t_2, sa_t_2 = r_t_2[selected_index], sa_t_2[selected_index]
# get labels
sa_t_1, sa_t_2, r_t_1, r_t_2, labels = self.get_label(
sa_t_1, sa_t_2, r_t_1, r_t_2)
if len(labels) > 0:
self.put_queries(sa_t_1, sa_t_2, labels)
return len(labels)
def kcenter_entropy_sampling(self):
num_init = self.mb_size*self.large_batch
num_init_half = int(num_init*0.5)
# get queries
sa_t_1, sa_t_2, r_t_1, r_t_2 = self.get_queries(
mb_size=num_init)
# get final queries based on uncertainty
entropy, _ = self.get_entropy(sa_t_1, sa_t_2)
top_k_index = (-entropy).argsort()[:num_init_half]
r_t_1, sa_t_1 = r_t_1[top_k_index], sa_t_1[top_k_index]
r_t_2, sa_t_2 = r_t_2[top_k_index], sa_t_2[top_k_index]
# get final queries based on kmeans clustering
temp_sa_t_1 = sa_t_1[:,:,:self.ds]
temp_sa_t_2 = sa_t_2[:,:,:self.ds]
temp_sa = np.concatenate([temp_sa_t_1.reshape(num_init_half, -1),
temp_sa_t_2.reshape(num_init_half, -1)], axis=1)
max_len = self.capacity if self.buffer_full else self.buffer_index
tot_sa_1 = self.buffer_seg1[:max_len, :, :self.ds]
tot_sa_2 = self.buffer_seg2[:max_len, :, :self.ds]
tot_sa = np.concatenate([tot_sa_1.reshape(max_len, -1),
tot_sa_2.reshape(max_len, -1)], axis=1)
selected_index = KCenterGreedy(temp_sa, tot_sa, self.mb_size)
r_t_1, sa_t_1 = r_t_1[selected_index], sa_t_1[selected_index]
r_t_2, sa_t_2 = r_t_2[selected_index], sa_t_2[selected_index]
# get labels
sa_t_1, sa_t_2, r_t_1, r_t_2, labels = self.get_label(
sa_t_1, sa_t_2, r_t_1, r_t_2)
if len(labels) > 0:
self.put_queries(sa_t_1, sa_t_2, labels)
return len(labels)
def uniform_sampling(self):
# get queries
sa_t_1, sa_t_2, r_t_1, r_t_2 = self.get_queries(
mb_size=self.mb_size)
# get labels
sa_t_1, sa_t_2, r_t_1, r_t_2, labels = self.get_label(
sa_t_1, sa_t_2, r_t_1, r_t_2)
if len(labels) > 0:
self.put_queries(sa_t_1, sa_t_2, labels)
return len(labels)
def disagreement_sampling(self):
# get queries
sa_t_1, sa_t_2, r_t_1, r_t_2 = self.get_queries(
mb_size=self.mb_size*self.large_batch)
# get final queries based on uncertainty
_, disagree = self.get_rank_probability(sa_t_1, sa_t_2)
top_k_index = (-disagree).argsort()[:self.mb_size]
r_t_1, sa_t_1 = r_t_1[top_k_index], sa_t_1[top_k_index]
r_t_2, sa_t_2 = r_t_2[top_k_index], sa_t_2[top_k_index]
# get labels
sa_t_1, sa_t_2, r_t_1, r_t_2, labels = self.get_label(
sa_t_1, sa_t_2, r_t_1, r_t_2)
if len(labels) > 0:
self.put_queries(sa_t_1, sa_t_2, labels)
return len(labels)
def entropy_sampling(self):
# get queries
sa_t_1, sa_t_2, r_t_1, r_t_2 = self.get_queries(
mb_size=self.mb_size*self.large_batch)
# get final queries based on uncertainty
entropy, _ = self.get_entropy(sa_t_1, sa_t_2)
top_k_index = (-entropy).argsort()[:self.mb_size]
r_t_1, sa_t_1 = r_t_1[top_k_index], sa_t_1[top_k_index]
r_t_2, sa_t_2 = r_t_2[top_k_index], sa_t_2[top_k_index]
# get labels
sa_t_1, sa_t_2, r_t_1, r_t_2, labels = self.get_label(
sa_t_1, sa_t_2, r_t_1, r_t_2)
if len(labels) > 0:
self.put_queries(sa_t_1, sa_t_2, labels)
return len(labels)
def train_reward(self):
ensemble_losses = [[] for _ in range(self.de)]
ensemble_acc = np.array([0 for _ in range(self.de)])
max_len = self.capacity if self.buffer_full else self.buffer_index
total_batch_index = []
for _ in range(self.de):
total_batch_index.append(np.random.permutation(max_len))
num_epochs = int(np.ceil(max_len/self.train_batch_size))
list_debug_loss1, list_debug_loss2 = [], []
total = 0
for epoch in range(num_epochs):
self.opt.zero_grad()
loss = 0.0
last_index = (epoch+1)*self.train_batch_size
if last_index > max_len:
last_index = max_len
for member in range(self.de):
# get random batch
idxs = total_batch_index[member][epoch*self.train_batch_size:last_index]
sa_t_1 = self.buffer_seg1[idxs]
sa_t_2 = self.buffer_seg2[idxs]
labels = self.buffer_label[idxs]
labels = torch.from_numpy(labels.flatten()).long().to(device)
if member == 0:
total += labels.size(0)
# get logits
r_hat1 = self.r_hat_member(sa_t_1, member=member)
r_hat2 = self.r_hat_member(sa_t_2, member=member)
r_hat1 = r_hat1.sum(axis=1)
r_hat2 = r_hat2.sum(axis=1)
r_hat = torch.cat([r_hat1, r_hat2], axis=-1)
# compute loss
curr_loss = self.CEloss(r_hat, labels)
loss += curr_loss
ensemble_losses[member].append(curr_loss.item())
# compute acc
_, predicted = torch.max(r_hat.data, 1)
correct = (predicted == labels).sum().item()
ensemble_acc[member] += correct
loss.backward()
self.opt.step()
ensemble_acc = ensemble_acc / total
return ensemble_acc
def train_soft_reward(self):
ensemble_losses = [[] for _ in range(self.de)]
ensemble_acc = np.array([0 for _ in range(self.de)])
max_len = self.capacity if self.buffer_full else self.buffer_index
total_batch_index = []
for _ in range(self.de):
total_batch_index.append(np.random.permutation(max_len))
num_epochs = int(np.ceil(max_len/self.train_batch_size))
list_debug_loss1, list_debug_loss2 = [], []
total = 0
for epoch in range(num_epochs):
self.opt.zero_grad()
loss = 0.0
last_index = (epoch+1)*self.train_batch_size
if last_index > max_len:
last_index = max_len
for member in range(self.de):
# get random batch
idxs = total_batch_index[member][epoch*self.train_batch_size:last_index]
sa_t_1 = self.buffer_seg1[idxs]
sa_t_2 = self.buffer_seg2[idxs]
labels = self.buffer_label[idxs]
labels = torch.from_numpy(labels.flatten()).long().to(device)
if member == 0:
total += labels.size(0)
# get logits
r_hat1 = self.r_hat_member(sa_t_1, member=member)
r_hat2 = self.r_hat_member(sa_t_2, member=member)
r_hat1 = r_hat1.sum(axis=1)
r_hat2 = r_hat2.sum(axis=1)
r_hat = torch.cat([r_hat1, r_hat2], axis=-1)
# compute loss
uniform_index = labels == -1
labels[uniform_index] = 0
target_onehot = torch.zeros_like(r_hat).scatter(1, labels.unsqueeze(1), self.label_target)
target_onehot += self.label_margin
if sum(uniform_index) > 0:
target_onehot[uniform_index] = 0.5
curr_loss = self.softXEnt_loss(r_hat, target_onehot)
loss += curr_loss
ensemble_losses[member].append(curr_loss.item())
# compute acc
_, predicted = torch.max(r_hat.data, 1)
correct = (predicted == labels).sum().item()
ensemble_acc[member] += correct
loss.backward()
self.opt.step()
ensemble_acc = ensemble_acc / total
return ensemble_acc