-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_utils.py
235 lines (209 loc) · 10 KB
/
train_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import os
import json
import yaml
import copy
import torch
import hydra
import random
import argparse
import datetime
import pickle as pkl
import numpy as np
import torch.nn as nn
from os.path import join
import torch.nn.functional as F
import matplotlib.pyplot as plt
from multiprocessing import cpu_count
from torch.utils.data import DataLoader
from einops import rearrange, reduce, repeat, parse_shape
from mosaic.models.discrete_logistic import DiscreteMixLogistic
from collections import defaultdict, OrderedDict
from hydra.utils import instantiate
from mosaic.datasets.multi_task_datasets import DIYBatchSampler, collate_by_task # need for val. loader
torch.autograd.set_detect_anomaly(True)
import learn2learn as l2l
# for visualization
MEAN = np.array([0.485, 0.456, 0.406], dtype=np.float32).reshape((1,3,1,1))
STD = np.array([0.229, 0.224, 0.225], dtype=np.float32).reshape((1,3,1,1))
def loss_to_scalar(loss):
x = loss.item()
return float("{:.5f}".format(x))
def make_data_loaders(config, dataset_cfg):
""" Use .yaml cfg to create both train and val dataloaders """
assert '_target_' in dataset_cfg.keys(), "Let's use hydra-config from now on. "
print("Initializing {} with hydra config. \n".format(dataset_cfg._target_))
dataset_cfg.mode = 'train'
dataset = instantiate(dataset_cfg)
samplerClass = DIYBatchSampler
train_sampler = samplerClass(
task_to_idx=dataset.task_to_idx,
subtask_to_idx=dataset.subtask_to_idx,
tasks_spec=dataset_cfg.tasks_spec,
sampler_spec=config.samplers)
train_loader = DataLoader(
dataset,
batch_sampler=train_sampler,
num_workers=min(11, config.get('loader_workers', cpu_count())),
worker_init_fn=lambda w: np.random.seed(np.random.randint(2 ** 29) + w),
collate_fn=collate_by_task
)
dataset_cfg.mode = 'val'
val_dataset = instantiate(dataset_cfg)
config.samplers.batch_size = config.train_cfg.val_size # allow validation batch to have a different size
val_sampler = samplerClass(
task_to_idx=val_dataset.task_to_idx,
subtask_to_idx=val_dataset.subtask_to_idx,
tasks_spec=dataset_cfg.tasks_spec,
sampler_spec=config.samplers
)
val_loader = DataLoader(
val_dataset,
batch_sampler=val_sampler,
num_workers=min(11, config.get('loader_workers', cpu_count())),
worker_init_fn=lambda w: np.random.seed(np.random.randint(2 ** 29) + w),
collate_fn=collate_by_task
)
return train_loader, val_loader
def collect_stats(step, task_losses, raw_stats, prefix='train'):
""" create/append to stats dict of a one-layer dict structure:
{'task_name/loss_key': [..], 'loss_key/task_name':[...]}"""
task_names = sorted(task_losses.keys())
for task, stats in task_losses.items():
# expects: {'button': {"loss_sum": 1, "l_bc": 1}}
for k, v in stats.items():
for log_key in [ f"{prefix}/{task}/{k}", f"{prefix}/{k}/{task}" ]:
if log_key not in raw_stats.keys():
raw_stats[log_key] = []
raw_stats[log_key].append(loss_to_scalar(v))
if "step" in raw_stats.keys():
raw_stats["step"].append(int(step))
else:
raw_stats["step"] = [int(step)]
tr_print = ""
for i, task in enumerate(task_names):
tr_print += "[{0:<9}] l_tot: {1:.1f} l_bc: {2:.1f} l_pnt: {3:.1f} l_aux: {4:.1f} l_rep: {5: 1f}".format( \
task,
raw_stats[f"{prefix}/{task}/loss_sum"][-1],
raw_stats[f"{prefix}/{task}/l_bc"][-1],
raw_stats.get( f"{prefix}/{task}/point_loss",[0] )[-1],
raw_stats.get( f"{prefix}/{task}/l_aux",[0] )[-1],
raw_stats.get( f"{prefix}/{task}/rep_loss",[0] )[-1],
)
if i % 3 == 2: # use two lines to print
tr_print += "\n"
return tr_print
def generate_figure(images, context, fname='burner.png'):
_B, T_im, _, _H, _W = images.shape
T_con = context.shape[1]
print("Images value range: ", images.min(), images.max(), context.max())
print("Generating figures from images shape {}, context shape {} \n".format(images.shape, context.shape))
npairs = 7
skip = 8
ncols = 4
fig, axs = plt.subplots(nrows=npairs * 2, ncols=ncols, figsize=(ncols*3.5, npairs*2*2.8), subplot_kw={'xticks': [], 'yticks': []})
fig.subplots_adjust(left=0.03, right=0.97, hspace=0.3, wspace=0.05)
for img_index in range(npairs):
show_img = images[img_index*skip].cpu().numpy() * STD + MEAN
show_con = context[img_index*skip].cpu().numpy() * STD + MEAN
for count in range(ncols):
axs[img_index*2, count].imshow(show_img[count].transpose(1,2,0))
if count < T_con:
axs[img_index*2+1, count].imshow(show_con[count].transpose(1,2,0))
plt.tight_layout()
print("Saving figure to: ", fname)
plt.savefig(fname)
def calculate_maml_loss(config, device, meta_model, model_inputs):
states, actions = model_inputs['states'], model_inputs['actions']
images, context = model_inputs['images'], model_inputs['demo']
aux = model_inputs['aux_pose']
meta_model = meta_model.to(device)
inner_iters = config.daml.get('inner_iters', 1)
l2error = torch.nn.MSELoss()
#error = 0
bc_loss, aux_loss = [], []
for task in range(states.shape[0]):
learner = meta_model.module.clone()
for _ in range(inner_iters):
learner.adapt(\
learner(None, context[task], learned_loss=True)['learned_loss'], allow_nograd=True, allow_unused=True)
out = learner(states[task], images[task], ret_dist=False)
l_aux = l2error(out['aux'], aux[task][None])[None]
mu, sigma_inv, alpha = out['action_dist']
action_distribution = DiscreteMixLogistic(mu[:-1], sigma_inv[:-1], alpha[:-1])
l_bc = -torch.mean(action_distribution.log_prob(actions[task]))[None]
bc_loss.append(l_bc)
aux_loss.append(l_aux)
return torch.cat(bc_loss, dim=0), torch.cat(aux_loss, dim=0)
def calculate_task_loss(config, train_cfg, device, model, task_inputs):
"""Assumes inputs are collated by task names already, organize things properly before feeding into the model s.t.
for each batch input, the model does only one forward pass."""
model_inputs = defaultdict(list)
task_to_idx = dict()
task_losses = OrderedDict()
start = 0
for idx, (task_name, inputs) in enumerate(task_inputs.items()):
traj = inputs['traj']
input_keys = ['states', 'actions', 'images', 'images_cp']
if config.use_daml:
input_keys.append('aux_pose')
for key in input_keys:
model_inputs[key].append( traj[key].to(device) )
model_inputs['points'].append( traj['points'].to(device).long() )
for key in ['demo', 'demo_cp']:
model_inputs[key].append( inputs['demo_data'][key].to(device) )
task_bsize = traj['actions'].shape[0]
task_to_idx[task_name] = [ start + i for i in range(task_bsize)]
task_losses[task_name] = OrderedDict()
start += task_bsize
for key in model_inputs.keys():
model_inputs[key] = torch.cat(model_inputs[key], dim=0)
all_losses = dict()
if config.use_daml:
bc_loss, aux_loss = calculate_maml_loss(model, model_inputs)
all_losses["l_bc"] = bc_loss
all_losses["l_aux"] = aux_loss
all_losses["loss_sum"] = bc_loss + aux_loss
else:
if config.policy._target_ == 'mosaic.models.mt_rep.VideoImitation':
out = model(
images=model_inputs['images'], images_cp=model_inputs['images_cp'],
context=model_inputs['demo'], context_cp=model_inputs['demo_cp'],
states=model_inputs['states'], ret_dist=False,
actions=model_inputs['actions'])
else: # other baselines
out = model(
images=model_inputs['images'],
context=model_inputs['demo'],
states=model_inputs['states'],
ret_dist=False)
# forward & backward action pred
actions = model_inputs['actions']
mu_bc, scale_bc, logit_bc = out['bc_distrib'] # mu_bc.shape: B, 7, 8, 4]) but actions.shape: B, 6, 8
action_distribution = DiscreteMixLogistic(mu_bc[:,:-1], scale_bc[:,:-1], logit_bc[:,:-1])
act_prob = rearrange(- action_distribution.log_prob(actions), 'B n_mix act_dim -> B (n_mix act_dim)')
all_losses["l_bc"] = train_cfg.bc_loss_mult * torch.mean(act_prob, dim=-1)
# compute inverse model density
inv_distribution = DiscreteMixLogistic(*out['inverse_distrib'])
inv_prob = rearrange(- inv_distribution.log_prob(actions), 'B n_mix act_dim -> B (n_mix act_dim)')
all_losses["l_inv"] = train_cfg.inv_loss_mult * torch.mean(inv_prob, dim=-1)
if 'point_ll' in out:
pnts = model_inputs['points']
l_point = train_cfg.pnt_loss_mult * \
torch.mean(-out['point_ll'][range(pnts.shape[0]), pnts[:,-1,0], pnts[:,-1,1]], dim=-1)
all_losses["point_loss"] = l_point
# NOTE: the model should output calculated rep-learning loss
rep_loss = torch.zeros_like(all_losses["l_bc"] )
for k, v in out.items():
if k in train_cfg.rep_loss_muls.keys():
v = torch.mean(v, dim=-1) # just return size (B,) here
v = v * train_cfg.rep_loss_muls.get(k, 0)
all_losses[k] = v
rep_loss = rep_loss + v
all_losses["rep_loss"] = rep_loss
all_losses["loss_sum"] = all_losses["l_bc"] + all_losses["l_inv"] + rep_loss
# flatten here to avoid headache
for (task_name, idxs) in task_to_idx.items():
for (loss_name, loss_val) in all_losses.items():
if len(loss_val.shape) > 0:
task_losses[task_name][loss_name] = torch.mean(loss_val[idxs])
return task_losses