-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathreplay_buffer.py
365 lines (329 loc) · 11.9 KB
/
replay_buffer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import datetime
import io
import random
import traceback
from collections import defaultdict
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import IterableDataset
import torch.nn.functional as F
import einops
from einops import rearrange, reduce
NUM_CLASSES = 6
def episode_len(episode):
# subtract -1 because the dummy first transition
return next(iter(episode.values())).shape[0] - 1
def save_episode(episode, fn):
with io.BytesIO() as bs:
np.savez_compressed(bs, **episode)
bs.seek(0)
with fn.open("wb") as f:
f.write(bs.read())
def load_episode(fn):
with fn.open("rb") as f:
episode = np.load(f)
episode = {k: episode[k] for k in episode.keys()}
return episode
class ReplayBufferStorage:
def __init__(self, data_specs, replay_dir, can=True):
self._data_specs = data_specs
self._replay_dir = replay_dir
self.can = can
if self.can:
print("buffer using can")
replay_dir.mkdir(exist_ok=True)
self._current_episode = defaultdict(list)
self._preload()
def __len__(self):
return self._num_transitions
def add(self, time_step):
for spec in self._data_specs:
if spec.name == "goalId":
value = time_step.info[spec.name]
else:
value = time_step[spec.name]
if np.isscalar(value):
value = np.full(spec.shape, value, spec.dtype)
if spec.name == "goalId":
value = value.reshape((1, 1)).astype(spec.dtype)
if spec.name == "observation" and self.can:
# argmax on the channels dimension, (.. x H x W x C)
# first, transpose to put in the back, argmax for the dimension, then transpose back.
# mainly for compatibility with the buffer
value = torch.transpose(torch.as_tensor(value), -1, -3)
value = torch.argmax(value, dim=-1, keepdim=True)
value = torch.transpose(value, -1, -3).numpy().astype(np.uint8)
assert (
spec.shape == value.shape and spec.dtype == value.dtype
), f"{spec.name} should be {spec.shape} and {spec.dtype}, but is {value.shape}, {value.dtype}"
self._current_episode[spec.name].append(value)
if time_step.last():
episode = dict()
for spec in self._data_specs:
value = self._current_episode[spec.name]
episode[spec.name] = np.array(value, spec.dtype)
self._current_episode = defaultdict(list)
self._store_episode(episode)
def _preload(self):
self._num_episodes = 0
self._num_transitions = 0
for fn in self._replay_dir.glob("*.npz"):
_, _, eps_len = fn.stem.split("_")
self._num_episodes += 1
self._num_transitions += int(eps_len)
def _store_episode(self, episode):
eps_idx = self._num_episodes
eps_len = episode_len(episode)
self._num_episodes += 1
self._num_transitions += eps_len
ts = datetime.datetime.now().strftime("%Y%m%dT%H%M%S")
eps_fn = f"{ts}_{eps_idx}_{eps_len}.npz"
save_episode(episode, self._replay_dir / eps_fn)
class ReplayBuffer(IterableDataset):
def __init__(
self,
replay_dir,
max_size,
num_workers,
nstep,
discount,
fetch_every,
save_snapshot,
lambda_steer,
lambda_accel,
lambda_upright,
lambda_prox,
her_ratio=0,
can=True,
lambda_lp=1
):
self._replay_dir = replay_dir
self._size = 0
self._max_size = max_size
self._num_workers = max(1, num_workers)
self._episode_fns = []
self._episodes = dict()
self._nstep = nstep
self._discount = discount
self._fetch_every = fetch_every
self._samples_since_last_fetch = fetch_every
self._save_snapshot = save_snapshot
self.her_ratio = her_ratio
self.goal_dist = 2
# reward shaping
self.lambda_steer = lambda_steer
self.lambda_accel = lambda_accel
self.lambda_upright = lambda_upright
self.lambda_prox = lambda_prox
self.lambda_lp = lambda_lp
self.can = can
def _sample_episode(self):
eps_fn = random.choice(self._episode_fns)
return self._episodes[eps_fn]
def _store_episode(self, eps_fn):
try:
episode = load_episode(eps_fn)
except:
return False
eps_len = episode_len(episode)
while eps_len + self._size > self._max_size:
early_eps_fn = self._episode_fns.pop(0)
early_eps = self._episodes.pop(early_eps_fn)
self._size -= episode_len(early_eps)
early_eps_fn.unlink(missing_ok=True)
self._episode_fns.append(eps_fn)
self._episode_fns.sort()
self._episodes[eps_fn] = episode
self._size += eps_len
if not self._save_snapshot:
eps_fn.unlink(missing_ok=True)
return True
def _try_fetch(self, bypass=False):
if self._samples_since_last_fetch < self._fetch_every and not bypass:
return
self._samples_since_last_fetch = 0
try:
worker_id = torch.utils.data.get_worker_info().id
except:
worker_id = 0
eps_fns = sorted(self._replay_dir.glob("*.npz"), reverse=True)
fetched_size = 0
for eps_fn in eps_fns:
eps_idx, eps_len = [int(x) for x in eps_fn.stem.split("_")[1:]]
if eps_idx % self._num_workers != worker_id:
continue
if eps_fn in self._episodes.keys():
break
if fetched_size + eps_len > self._max_size:
break
fetched_size += eps_len
if not self._store_episode(eps_fn):
break
def _sample(self):
try:
self._try_fetch()
except:
traceback.print_exc()
self._samples_since_last_fetch += 1
episode = self._sample_episode()
# add +1 for the first dummy transition
idx = np.random.randint(0, episode_len(episode) - self._nstep) + 1 # + 1) + 1
achieved_goal_arr = episode['achieved_goal']
if np.random.random() < self.her_ratio:
goal_idx = np.random.randint(idx, episode_len(episode) - self._nstep + 1)
goal_world = episode['desired_goal'][goal_idx]
achieved_goal_arr = episode['achieved_goal'].copy() # todo: no need to copy entire
for i in range(-1, self._nstep+1):
ego_world = episode['desired_goal'][idx + i]
theta = episode['rot'][idx + i][..., 1]
achieved_goal_arr[idx + i] = self.convert_coordinates(goal_world, ego_world, theta)
s_a = achieved_goal_arr[idx - 1]
ns_a = achieved_goal_arr[idx + self._nstep - 1]
else:
goal_idx = idx
s_a = episode['achieved_goal'][idx - 1]
ns_a = episode['achieved_goal'][idx + self._nstep - 1]
if not self.can:
obs = episode['observation'][idx - 1]
else:
t = (
torch.as_tensor(episode["observation"][idx - 1])
.transpose(-1, -3)
.long()
)
obs = (
F.one_hot(t.squeeze(-1), num_classes=NUM_CLASSES)
.transpose(-1, -3)
.float()
.numpy()
)
action = episode["action"][idx]
if not self.can:
next_obs = episode["observation"][idx + self._nstep - 1]
else:
next_t = (
torch.as_tensor(episode["observation"][idx + self._nstep - 1])
.transpose(-1, -3)
.long()
)
next_obs = (
F.one_hot(
next_t.squeeze(-1), num_classes=NUM_CLASSES
)
.transpose(-1, -3)
.float()
.numpy()
)
reward = np.zeros_like(episode["reward"][idx])
discount = np.ones_like(episode["discount"][idx])
odom = episode["odom"][idx - 1]
nodom = episode["odom"][idx + self._nstep - 1]
reward = np.zeros_like(episode["reward"][idx])
discount = np.ones_like(episode["discount"][idx])
completed_goal = False
for i in range(self._nstep):
# achieved_goal_arr to account for relabelling
dist_norm = np.linalg.norm(achieved_goal_arr[idx + i + 1], axis=-1)
goal_reward = (dist_norm < self.goal_dist).astype(float) * 101 - 1 * self.lambda_lp + episode['reward'][idx + i]
prox_reward = self.lambda_prox * max(0, 10-dist_norm)
# penalize x, z rotations
upright_penalty = (
np.minimum(
episode["rot"][idx + i][..., 0:3:2],
360 - episode["rot"][idx + i][..., 0:3:2],
)
/ 180
)
upright_reward = -self.lambda_upright * upright_penalty.mean(
axis=-1
) # always between 0, -5
steer_reward = (-self.lambda_steer) * np.absolute(
episode["action"][idx + i][..., 0]
)
accel_reward = self.lambda_accel * np.square(
episode["action"][idx + i][..., 1]
)
steer_reward = steer_reward.mean(axis=-1)
accel_reward = accel_reward.mean(axis=-1)
completed_goal = completed_goal or (dist_norm < self.goal_dist)
if (episode['goalId'][idx+i][0] != episode['goalId'][idx][0]):
if completed_goal:
step_reward = 100
else:
step_reward = 0
else:
step_reward = goal_reward + prox_reward + upright_reward + steer_reward + accel_reward
reward += discount * step_reward
discount *= episode["discount"][idx + i] * self._discount
return (
obs,
action,
reward,
discount,
next_obs,
s_a,
ns_a,
odom,
nodom,
)
def __iter__(self):
while True:
yield self._sample()
def convert_coordinates(self, goal_world, ego_world, theta):
# subtract offset
goal_ego = goal_world[0] - ego_world[0]
# rotate counterclockwise by theta (degrees)
rad = np.deg2rad(theta[0])
rot_mat = np.array([[np.cos(rad), -np.sin(rad)], [np.sin(rad), np.cos(rad)]])
new_vec = rot_mat @ goal_ego
return np.array([new_vec])
def _worker_init_fn(worker_id):
seed = np.random.get_state()[1][0] + worker_id
np.random.seed(seed)
random.seed(seed)
def make_replay_loader(
replay_dir,
max_size,
batch_size,
num_workers,
save_snapshot,
nstep,
discount,
lambda_steer,
lambda_accel,
lambda_upright,
lambda_prox,
her_ratio=0,
can=False,
lambda_lp=1
):
max_size_per_worker = max_size // max(1, num_workers)
iterable = ReplayBuffer(
replay_dir,
max_size_per_worker,
num_workers,
nstep,
discount,
fetch_every=1000,
save_snapshot=save_snapshot,
lambda_steer=lambda_steer,
lambda_accel=lambda_accel,
lambda_upright=lambda_upright,
lambda_prox=lambda_prox,
her_ratio=her_ratio,
can=can,
lambda_lp=lambda_lp
)
loader = torch.utils.data.DataLoader(
iterable,
batch_size=batch_size,
num_workers=num_workers,
pin_memory=True,
worker_init_fn=_worker_init_fn,
)
return loader