-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathboundary_cityscapes.yaml
89 lines (82 loc) · 2.46 KB
/
boundary_cityscapes.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# pytorch_lightning==1.8.6
seed_everything: 0
trainer:
max_epochs: 40
accelerator: gpu
strategy: ddp_find_unused_parameters_false
sync_batchnorm: True
logger: False
callbacks:
- class_path: pytorch_lightning.callbacks.model_checkpoint.ModelCheckpoint
init_args:
dirpath: "checkpoints/"
filename: "boundary_cityscapes"
every_n_epochs: 10
model:
dinov2_vit_model: "vitb14"
mode: "direct"
upsample_factor: 4.0
head: "mlp"
neighbor_radius: 1.5
threshold_boundary: 0.93
num_boundary_neighbors: 1
test_output_size: ${data_params.image_size_original}
test_multi_scales: [3, 4, 5]
test_plot: False
data:
class_path: datasets.cityscapes.CityscapesDataModule
init_args:
cfg_dataset:
name: "cityscapes"
path: "" # SET THE PATH TO THE CITYSCAPES DATASET
feed_img_size: ${data_params.image_size_original}
offsets: [0]
remove_classes: []
num_classes: 19
batch_size: 1
num_workers: 1
transform_train:
- class_path: utils.transforms.ToTensor
- class_path: utils.transforms.RandomHorizontalFlip
- class_path: utils.transforms.RandomResizedCrop
init_args:
size: ${data_params.image_size_input}
scale: [0.4, 1.0]
- class_path: utils.transforms.ColorJitter
init_args:
brightness: 0.2
contrast: 0.2
saturation: 0.2
hue: 0.2
- class_path: utils.transforms.MaskPostProcess
- class_path: utils.transforms.ImageNormalize
init_args:
mean: ${data_params.image_mean}
std: ${data_params.image_std}
transform_test:
- class_path: utils.transforms.ToTensor
- class_path: utils.transforms.Resize
init_args:
size: ${data_params.image_size_input}
- class_path: utils.transforms.MaskPostProcess
- class_path: utils.transforms.ImageNormalize
init_args:
mean: ${data_params.image_mean}
std: ${data_params.image_std}
label_mode: "cityscapes_19"
train_sample_indices: [12, 324, 450, 608, 742, 768, 798, 836, 1300, 2892]
test_sample_indices: null
data_params:
image_size_original: [1024, 2048]
image_size_input: [1008, 2016]
image_mean: [0.485, 0.456, 0.406]
image_std: [0.229, 0.224, 0.225]
ckpt_path: null
optimizer:
class_path: torch.optim.Adam
init_args:
lr: 0.001
lr_scheduler:
class_path: torch.optim.lr_scheduler.CosineAnnealingLR
init_args:
T_max: ${trainer.max_epochs}