-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrunning.py
302 lines (258 loc) · 11.5 KB
/
running.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
'''
Description:
Wrapper of running PRESCIENT model.
Codes are adopted from PRESCIENT source codes.
Author:
Jiaqi Zhang <[email protected]>
Reference:
https://github.com/gifford-lab/prescient/blob/master/prescient/commands/process_data.py
'''
import torch
import numpy as np
import pandas as pd
import pickle as pkl
import sklearn
import umap
from time import strftime, localtime
from types import SimpleNamespace
import os
import copy
import argparse
import baseline.prescient_model.prescient.train as train
import baseline.prescient_model.prescient.simulate as traj
from baseline.prescient_model.prescient.train.model import *
# --------------------------------------------------
def init_config(args):
config = SimpleNamespace(
seed=args.seed,
timestamp=strftime("%a, %d %b %Y %H:%M:%S", localtime()),
# data parameters
data_path=args.data_path,
weight=args.weight,
# model parameters
activation=args.activation,
layers=args.layers,
k_dim=args.k_dim,
# pretraining parameters
pretrain_burnin=50,
pretrain_sd=0.1,
pretrain_lr=1e-9,
pretrain_epochs=args.pretrain_epochs,
# training parameters
train_dt=args.train_dt,
train_sd=args.train_sd,
train_batch_size=args.train_batch,
ns=2000,
train_burnin=100,
train_tau=args.train_tau,
train_epochs=args.train_epochs,
train_lr=args.train_lr,
train_clip=args.train_clip,
save=args.save,
# loss parameters
sinkhorn_scaling=0.7,
sinkhorn_blur=0.1,
# file parameters
out_dir=args.out_dir,
out_name=args.out_dir.split('/')[-1],
pretrain_pt=os.path.join(args.out_dir, 'pretrain.pt'),
train_pt=os.path.join(args.out_dir, 'train.{}.pt'),
train_log=os.path.join(args.out_dir, 'train.log'),
done_log=os.path.join(args.out_dir, 'done.log'),
config_pt=os.path.join(args.out_dir, 'config.pt'),
)
config.train_t = []
config.test_t = []
# if not os.path.exists(args.out_dir):
# print('Making directory at {}'.format(args.out_dir))
# os.makedirs(args.out_dir)
# else:
# print('Directory exists at {}'.format(args.out_dir))
return config
def load_data(args):
return torch.load(args.data_path)
def train_init(args):
a = copy.copy(args)
data_pt = args.data_pt
x = data_pt["xp"]
y = data_pt["y"]
weight = data_pt["w"]
if args.weight_name != None:
a.weight = args.weight_name
# out directory
a.train_sd = args.train_sd
a.train_lr = args.train_lr
a.train_clip = args.train_clip
a.train_batch = args.train_batch
name = (
"{weight}-"
"{activation}_{layers}_{k_dim}-"
"{train_tau}-"
"{train_sd}-"
"{train_lr}-"
"{train_clip}-"
"{train_batch}"
).format(**a.__dict__)
name = name + "-{}".format(a.timestamp)
a.out_dir = os.path.join(args.out_dir, name, 'seed_{}'.format(a.seed))
config = init_config(a)
config.x_dim = x[0].shape[-1]
config.t = y[-1] - y[0]
# config.start_t = y[0]
# config.train_t = y[1:]
config.start_t = 0
config.train_t = a.train_t
y_start = y[config.start_t]
y_ = [y_ for y_ in y if y_ > y_start]
w_ = weight[config.start_t]
w = {(y_start, yy): torch.from_numpy(np.exp((yy - y_start) * w_)) for yy in y_}
return x, y, w, config
def trainModel(args):
model, best_state_dict, config, loss_list = train.run(args, train_init)
return model, best_state_dict, config, loss_list
def trainModelWithTimer(args):
pretrain_time, iter_time, iter_metric = train.run_with_timer(args, train_init)
return pretrain_time, iter_time, iter_metric
def makeSimulation(args, config):
# load data
# data_pt = torch.load(args.data_path)
data_pt = args.data_pt
expr = data_pt["data"]
pca = data_pt["pca"]
xp = pca.transform(expr)
# xp = expr
# torch device
if args.gpu != None:
device = torch.device('cuda:{}'.format(args.gpu))
else:
device = torch.device('cpu')
# load model
net = AutoGenerator(config)
net.load_state_dict(args.best_model_state['model_state_dict'])
net.to(device)
# Either use assigned number of steps or calculate steps, both using the stepsize used for training
if args.num_steps == None:
num_steps = int(np.round(data_pt["y"] / config.train_dt))
else:
num_steps = int(args.num_steps)
# simulate forward
num_cells = min(args.num_cells, xp.shape[0])
out = traj.simulate(
xp, data_pt["tps"], data_pt["celltype"], data_pt["w"], net, config, args.num_sims, num_cells,
num_steps, device, args.tp_subset, args.celltype_subset)
return out[0]
# --------------------------------------------------
def create_train_parser():
parser = argparse.ArgumentParser()
parser.add_argument('--no-cuda', action='store_true')
parser.add_argument('--gpu', default=-1, type=int,
help="Designate GPU number as an integer (compatible with CUDA).")
parser.add_argument('--out_dir', default='./mammalian/', help="Directory for storing training output.")
parser.add_argument('--seed', type=int, default=2, help="Set seed for training process.")
# -- data options
parser.add_argument('-i', '--data_path', default="mammalian", help="Input PRESCIENT data torch file.")
parser.add_argument('--weight_name', default="default",
help="Designate descriptive name of growth parameters for filename.")
# -- model options
parser.add_argument('--loss', default='euclidean', help="Designate distance function for loss.")
parser.add_argument('--k_dim', default=100, type=int, help="Designate hidden units of NN.")
parser.add_argument('--activation', default='softplus', help="Designate activation function for layers of NN.")
parser.add_argument('--layers', default=2, type=int,
help="Choose number of layers for neural network parameterizing the potential function.")
# -- pretrain options
parser.add_argument('--pretrain_epochs', default=5, type=int,
help="Number of epochs for pretraining with contrastive divergence.")
# -- train options
parser.add_argument('--train_epochs', default=100, type=int, help="Number of epochs for training.")
parser.add_argument('--train_lr', default=0.1, type=float, help="Learning rate for Adam optimizer during training.")
parser.add_argument('--train_dt', default=0.1, type=float, help="Timestep for simulations during training.")
parser.add_argument('--train_sd', default=0.5, type=float,
help="Standard deviation of Gaussian noise for simulation steps.")
parser.add_argument('--train_tau', default=1e-6, type=float, help="Tau hyperparameter of PRESCIENT.")
parser.add_argument('--train_batch', default=0.1, type=float, help="Batch size for training.")
parser.add_argument('--train_clip', default=0.25, type=float, help="Gradient clipping threshold for training.")
parser.add_argument('--save', default=100, type=int, help="Save model every n epochs.")
# -- run options
parser.add_argument('--pretrain', type=bool, default=True, help="If True, pretraining will run.")
parser.add_argument('--train', type=bool, default=True,
help="If True, training will run with existing pretraining torch file.")
parser.add_argument('--config')
return parser
def create_simulate_parser():
parser = argparse.ArgumentParser()
parser.add_argument("-i", "--data_path", default="mammalian", required=False,
help="Path to PRESCIENT data file stored as a torch pt.")
parser.add_argument("--model_path",
default="./mammalian/default-softplus_2_100-1e-06-0.5-0.1-0.25-0.1-20230612215839/",
required=False, help="Path to directory containing PRESCIENT model for simulation.")
parser.add_argument("--seed", default=2, required=False,
help="Choose the seed of the trained model to use for simulations.")
parser.add_argument("--epoch", type=str, required=False,
help="Choose which epoch of the model to use for simulations.")
parser.add_argument("--num_sims", default=1, help="Number of simulations to run.")
parser.add_argument("--num_cells", default=2000, help="Number of cells per simulation.")
parser.add_argument("--num_steps", default=120, required=False,
help="Define number of forward steps of size dt to take.")
# parser.add_argument("--num_steps", default=None, required=False,
# help="Define number of forward steps of size dt to take.")
parser.add_argument("--gpu", default=None, required=False, help="If available, assign GPU device number.")
parser.add_argument("--celltype_subset", default=None, required=False,
help="Randomly sample initial cells from a particular celltype defined in metadata.")
parser.add_argument("--tp_subset", default=None, required=False,
help="Randomly sample initial cells from a particular timepoint.")
parser.add_argument("-o", "--out_path", required=False, default="../../Prediction/PRESCIENT/",
help="Path to output directory.")
return parser
# --------------------------------------------------
def prescientTrain(data_dict, data_name, out_dir, k_dim, layers, train_epochs, train_lr, train_sd, train_tau, train_clip, train_t, timestamp):
print("PRESCIENT model training...")
train_parser = create_train_parser()
args = train_parser.parse_args()
args.data_path = data_name
args.out_dir = out_dir
args.k_dim = k_dim
args.data_pt = data_dict
args.train_t = train_t
args.timestamp = timestamp
args.layers = layers # num of hidden layers
args.train_epochs = train_epochs
args.train_lr = train_lr
args.train_sd = train_sd # Gaussian sd for simulation
args.train_tau = train_tau
args.train_clip = train_clip # gradient clipping
model, best_state_dict, config, loss_list = trainModel(args)
return model, best_state_dict, config, loss_list
def prescientSimulate(data_dict, data_name, best_model_state, num_cells, num_steps, config):
sim_parser = create_simulate_parser()
args = sim_parser.parse_args()
args.data_pt = data_dict
args.data_path = data_name
args.best_model_state = best_model_state
args.num_cells = num_cells
args.num_steps = num_steps
# -----
sim_data = makeSimulation(args, config)
return sim_data
def prescientTrainWithTimer(
data_dict, data_name, out_dir, k_dim, layers, train_epochs, train_lr, train_sd, train_tau, train_clip,
train_t, timestamp, num_cells, num_steps, test_tps):
print("PRESCIENT model training...")
train_parser = create_train_parser()
args = train_parser.parse_args()
args.data_path = data_name
args.out_dir = out_dir
args.k_dim = k_dim
args.data_pt = data_dict
args.train_t = train_t
args.timestamp = timestamp
args.layers = layers # num of hidden layers
args.train_epochs = train_epochs
args.train_lr = train_lr
args.train_sd = train_sd # Gaussian sd for simulation
args.train_tau = train_tau
args.train_clip = train_clip # gradient clipping
args.num_cells = num_cells
args.num_steps = num_steps
args.test_tps = test_tps
pretrain_time, iter_time, iter_metric = trainModelWithTimer(args)
return pretrain_time, iter_time, iter_metric