-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_action_rnn.py
412 lines (338 loc) · 13.8 KB
/
train_action_rnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
"""Module containing RNN autoencoder for action sequences
and its training routines: preprocessing sequences, training, saving
"""
import os
import sys
import shutil
import argparse
import numpy as np
import pandas as pd
from datetime import datetime
from sklearn.model_selection import train_test_split as split
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from matgps.action_rnn.model import LSTM
from matgps.action_rnn.data import (
ActionData,
collate_batch,
)
def main():
"""
Train the action sequence encoder.
"""
# gets raw action sequences (OHE embedded already)
train_set = ActionData(args.train_path, args.action_path)
tokens = "\n\t".join(f"{val} - {key}" for (key, val) in train_set.action_dict.items())
input_dim = train_set.action_fea_dim
print(f"Model Tokens:\n\t{tokens}")
# get train/val/test generators - these form the padded sequences
train_idx = list(range(len(train_set)))
train_set = torch.utils.data.Subset(train_set, train_idx[0::args.sample])
test_set = ActionData(args.test_path, args.action_path)
if args.val_path:
val_set = ActionData(args.val_path, args.action_path)
else:
print("No validation set gvien, using test set for evaluation purposes")
val_set = test_set
params = {
"batch_size": args.batch_size,
"num_workers": args.workers,
"pin_memory": False,
"shuffle": True,
"collate_fn": collate_batch
}
train_generator = DataLoader(train_set, **params)
val_generator = DataLoader(val_set, **params)
# initialise model and optimization
model = LSTM(
input_dim=input_dim,
latent_dim=args.latent_dim,
device=args.device,
num_layers=args.num_layers,
embedding_dim=args.embedding_dim
)
model.to(args.device)
if args.loss == "Custom":
criterion = custom_rnn_loss
elif args.loss == "CrossEntropy":
criterion = nn.CrossEntropyLoss(ignore_index=0)
elif args.loss == "MSE":
criterion = nn.MSELoss()
else:
raise NameError("Only custom or MSE are allowed as --loss")
# Select Optimiser
if args.optim == "SGD":
optimizer = optim.SGD(model.parameters(),
lr=args.learning_rate,
weight_decay=args.weight_decay,
momentum=args.momentum)
elif args.optim == "Adam":
optimizer = optim.Adam(model.parameters(),
lr=args.learning_rate,
weight_decay=args.weight_decay)
elif args.optim == "AdamW":
optimizer = optim.AdamW(model.parameters(),
lr=args.learning_rate,
weight_decay=args.weight_decay)
else:
raise NameError("Only SGD or Adam is allowed as --optim")
# print model details
num_param = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("Total Number of Trainable Parameters: {}".format(num_param))
print(model)
# Ensure directory structure present
os.makedirs(f"models/", exist_ok=True)
os.makedirs("runs/", exist_ok=True)
os.makedirs("results/", exist_ok=True)
# try except structure used to allow keyboard interupts to stop training
# without breaking the code
start_epoch = 0
if not args.evaluate:
idx_details = f"f-{args.fold_id}_s-{args.seed}_t-{args.sample}"
writer = SummaryWriter(
log_dir=(f"runs/rnn-{idx_details}_{datetime.now():%d-%m-%Y_%H-%M-%S}")
)
checkpoint_file = f"models/checkpoint_rnn_{idx_details}.pth.tar"
best_file = f"models/best_rnn_{idx_details}.pth.tar"
best_loss = model.evaluate(
generator=val_generator,
criterion=criterion,
optimizer=None,
device=args.device,
task="val"
)
try:
for epoch in range(start_epoch, start_epoch+args.epochs):
# Training
t_loss = model.evaluate(
generator=train_generator,
criterion=criterion,
optimizer=optimizer,
device=args.device,
task="train",
verbose=True
)
# Validation
with torch.no_grad():
# evaluate on validation set
val_loss = model.evaluate(
generator=val_generator,
criterion=criterion,
optimizer=None,
device=args.device,
task="val"
)
# if epoch % args.print_freq == 0:
print("Epoch: [{}/{}]\n"
"Train : Loss {:.4f}\t"
"Validation : Loss {:.4f}\t".format(
epoch+1, start_epoch + args.epochs,
t_loss, val_loss))
# save model
is_best = val_loss < best_loss
if is_best:
best_loss = val_loss
checkpoint_dict = {
"epoch": epoch,
"state_dict": model.state_dict(),
"best_error": best_loss,
"optimizer": optimizer.state_dict(),
"args": vars(args)
}
torch.save(checkpoint_dict, checkpoint_file)
if is_best:
shutil.copyfile(checkpoint_file, best_file)
writer.add_scalar("loss/train", t_loss, epoch+1)
writer.add_scalar("loss/validation", val_loss, epoch+1)
except KeyboardInterrupt:
pass
# test set
print("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n"
"------------Evaluate model on Test Set------------\n"
"~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n")
params = {"batch_size": args.batch_size,
"num_workers": args.workers,
"pin_memory": False,
"shuffle": False,
"collate_fn": collate_batch}
test_generator = DataLoader(test_set, **params)
test_pred, test_lens, test_encoded, test_targets, test_total = model.evaluate(
generator=test_generator,
criterion=criterion,
optimizer=optimizer,
device=args.device,
task="test",
verbose=True
)
# test actual sequences
y_pred_seq = []
y_target_seq = []
for reaction in range(len(test_targets)):
y_pred_seq.append([np.argmax(test_pred[reaction][x]) for x in range(int(test_lens[reaction])-1)])
y_target_seq.append([np.argmax(test_targets[reaction][x]) for x in range(int(test_lens[reaction])-1)])
# print(y_pred_seq[:10])
# print(y_target_seq[:10])
# save results
df = pd.DataFrame({"y_pred": y_pred_seq, "y_target": y_target_seq})
df.to_csv(index=False, path_or_buf=(f"results/rnn_f-{args.fold_id}.csv"))
print("dumped preds and targets to df")
# metrics
correct = 0
for reaction in range(len(y_pred_seq)):
if y_target_seq[reaction] == y_pred_seq[reaction]:
correct += 1
subset_acc = correct/len(y_target_seq)
print('subset acc', subset_acc)
y_pred_all = [item for t in y_pred_seq for item in t]
y_target_all = [item for t in y_target_seq for item in t]
diff = np.subtract(y_pred_all, y_target_all)
accuracy = (len(y_pred_all)-np.count_nonzero(diff))/len(y_pred_all)
print('total accuracy', accuracy)
def custom_rnn_loss(output, target):
"""Cross Entropy loss function with weights from batch
Weighting: (Max no. of occurences of any class)/(No. of occurances of class)
target: tensor (total no. of actions in batch) with integer class labels
"""
# find number of occurances of each type
num_actions = []
for i in range(output.shape[1]):
num_actions.append((target == i).unsqueeze(0))
num_actions = torch.cat(num_actions, dim=0).sum(dim=1)
# print(num_actions)
# print(target)
# find max number of actions
max_num_actions = torch.max(num_actions).repeat(len(num_actions))
# weights
weight = torch.where(num_actions != 0, max_num_actions / num_actions, num_actions).float()
weighted_loss = nn.CrossEntropyLoss(ignore_index=0, weight=weight)(output, target)
# weighted_loss = nn.CrossEntropyLoss(ignore_index=0)(output, target)
return weighted_loss
def input_parser():
"""
parse input
"""
parser = argparse.ArgumentParser(description="Action RNN Autoencoder Training")
# dataset inputs
parser.add_argument("--train-path",
type=str,
default="data/train_10_precs.pkl",
metavar="PATH",
help="Path to results dataframe from element prediction")
parser.add_argument("--test-path",
type=str,
default="data/test_10_precs.pkl",
metavar="PATH",
help="Path to results dataframe from element prediction")
parser.add_argument("--val-path",
type=str,
default=None,
metavar="PATH",
help="Path to results dataframe from element prediction")
parser.add_argument("--action-path",
type=str,
default="data/action_dict_10_precs.json",
metavar="PATH",
help="action dict path")
parser.add_argument("--embedding-dim",
type=int,
default=8,
metavar="N",
help="Dim of embedding rep for sequences (linear embedding instead of OHE)")
parser.add_argument("--latent-dim",
type=int,
default=32,
metavar="N",
help="Dim of latent representation of sequence")
parser.add_argument("--num-layers",
type=int,
default=1,
metavar="N",
help="Number of LSTM layers")
# dataloader inputs
parser.add_argument("--workers",
default=0,
type=int,
metavar="N",
help="number of data loading workers (default: 0)")
parser.add_argument("--batch-size", "--bsize",
default=128,
type=int,
metavar="N",
help="mini-batch size (default: 128)")
parser.add_argument("--val-size",
default=0.0,
type=float,
metavar="N",
help="proportion of data used for validation")
parser.add_argument("--test-size",
default=0.2,
type=float,
metavar="N",
help="proportion of data for testing")
parser.add_argument("--seed",
default=0,
type=int,
metavar="N",
help="seed for random number generator")
parser.add_argument("--sample",
default=1,
type=int,
metavar="N",
help="sub-sample the training set for learning curves")
parser.add_argument("--fold-id",
default=0,
type=int,
metavar="N",
help="fold id for run")
parser.add_argument("--evaluate",
action="store_true",
help="skip network training stages checkpoint")
# optimiser inputs
parser.add_argument("--epochs",
default=70,
# default=100,
type=int,
metavar="N",
help="number of total epochs to run")
parser.add_argument("--loss",
default="Custom",
type=str,
metavar="str",
help="choose a Loss Function")
parser.add_argument("--optim",
default="SGD",
type=str,
metavar="str",
help="choose an optimizer; SGD, Adam or AdamW")
parser.add_argument("--learning-rate", "--lr",
default=0.3,
type=float,
metavar="float",
help="initial learning rate (default: 0.3)")
parser.add_argument("--momentum",
default=0.9,
type=float,
metavar="float [0,1]",
help="momentum (default: 0.9)")
parser.add_argument("--weight-decay",
default=1e-6,
type=float,
metavar="float [0,1]",
help="weight decay (default: 0)")
parser.add_argument('--teacher-forcing',
action="store_true",
help='If using the teacher frocing in decoder')
parser.add_argument("--disable-cuda",
action="store_true",
help="Disable CUDA")
args = parser.parse_args(sys.argv[1:])
args.device = torch.device("cuda") if (not args.disable_cuda) and \
torch.cuda.is_available() else torch.device("cpu")
return args
if __name__ == "__main__":
args = input_parser()
print(f"The model will run on the {args.device} device")
main()