-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinf_nerf_config.py
87 lines (85 loc) · 3.3 KB
/
inf_nerf_config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
from pathlib import Path
from nerfstudio.engine.trainer import TrainerConfig
from nerfstudio.plugins.types import MethodSpecification
from infnerf.inf_nerf_model import InfNerfModelConfig
from infnerf.octree_node import OctreeNodeConfig
from nerfstudio.pipelines.base_pipeline import VanillaPipelineConfig
from nerfstudio.data.datamanagers.base_datamanager import VanillaDataManagerConfig
from infnerf.inf_nerf_datamanager import MixMultiResDataManagerConfig
from nerfstudio.data.dataparsers.nerfstudio_dataparser import NerfstudioDataParserConfig
from infnerf.inf_nerf_dataparser import InfNerfDataParserConfig
from nerfstudio.configs.base_config import ViewerConfig
from nerfstudio.engine.optimizers import AdamOptimizerConfig, RAdamOptimizerConfig
from nerfstudio.engine.schedulers import (
ExponentialDecaySchedulerConfig,
)
GPU_scale = 16 #64
print('##### GPU_scale: ', GPU_scale)
InfNerf=MethodSpecification(
config=TrainerConfig(
method_name="inf-nerf",
steps_per_eval_batch=100, # evaluation step 100
steps_per_eval_image=500,
steps_per_save=4000, # 1000
save_only_latest_checkpoint=False,
max_num_iterations=5000*4000*2000//(GPU_scale*4096),# (total pixel=w*h*num_img)/ ray_per_batch
mixed_precision=True,
pipeline=VanillaPipelineConfig(
datamanager = MixMultiResDataManagerConfig(
dataparser=InfNerfDataParserConfig(
#scene_scale=0.5
downscale_factor=1,
largest_downscale=1, # indicate the largest downscale factor for image preparation
),
train_num_images_to_sample_from=1000, #3000
train_num_times_to_repeat_images=100, # -1
eval_num_images_to_sample_from=50,
eval_num_times_to_repeat_images=50,
train_num_rays_per_batch=4096*GPU_scale,
eval_num_rays_per_batch=1024*GPU_scale,
train_scale=[
#0.0625/8,
#0.0625/4,
#0.0625/2,
0.0625,
0.0625,
0.125,
0.0625,
0.125,
0.25,
0.5,
1.0,
],
eval_scale=[
# 0.0625/16,
#0.0625/8,
#0.0625/4,
#0.0625/2,
0.0625,
0.125,
0.25,
0.5,
1.0
]
),
model=InfNerfModelConfig(
tree_config = OctreeNodeConfig(
max_depth=4,
),
eval_num_rays_per_chunk=(1<<10)*GPU_scale,
),
),
optimizers={
"root":{
"optimizer": AdamOptimizerConfig(lr=1e-2, eps=1e-15),
"scheduler": ExponentialDecaySchedulerConfig(lr_final=0.0001, max_steps=200000),
}
},
viewer=ViewerConfig(
num_rays_per_chunk=1 << 15,
max_num_display_images=1),
vis=
"viewer+tensorboard",
),
description="Infnerf description"
)