-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetboundary5.m
154 lines (139 loc) · 4.78 KB
/
setboundary5.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
function [bc]=boundary(lattice,state,geo)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Copyright (C) 1999, 2007 Tomas Melin
%
% This file is part of Tornado
%
% Tornado is free software; you can redistribute it and/or
% modify it under the terms of the GNU General Public
% License as published by the Free Software Foundation;
% either version 2, or (at your option) any later version.
%
% Tornado is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied
% warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
% PURPOSE. See the GNU General Public License for more
% details.
%
% You should have received a copy of the GNU General Public
% License along with Tornado; see the file GNU GENERAL
% PUBLIC LICENSE.TXT. If not, write to the Free Software
% Foundation, 59 Temple Place -Suite 330, Boston, MA
% 02111-1307, USA.
%
% usage: [boundarycondition] = boundary4(lattice,state,geo)
%
% This function computes the right hand side of the vortex lattice equation
% system. I.e. the velocity parallell to the panel normal through each
% collocation point due to rotations and angle of attack and sideslip.
%
% Example:
%
% rhs=(setboundary4(lattice,state,geo))';
%
% Calls:
% None
%
% Author: Tomas Melin <[email protected]>
% Keywords: Tornado core function
%
% Revision History:
% Bristol, 2007 06 27: Addition of new header. TM.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[a b c]=size(lattice.COLLOC);
V=state.AS;
delta=config('delta'); %Differential delta.
try
geo.CG;
catch
geo.CG=geo.ref_point;
end
%%%%
%Steady state boundary condition column
wind=V.*([cos(state.alpha)*cos(state.betha) -cos(state.alpha)*sin(state.betha) sin(state.alpha)]);
Wind=ones(a,1)*wind;
for i=1:a
Rot(i,:)=cross((lattice.COLLOC(i,:)-geo.CG),[state.P state.Q state.R]);
end
veloc=Wind+Rot;
bc(:,1)=sum(lattice.N.*veloc,2)'; %steady state bc
%%%%%%%%%%%%%%%%%%%%%%%
%%%%%
%alpha derivative column
state.alpha=state.alpha+delta;
wind=V.*([cos(state.alpha)*cos(state.betha) -cos(state.alpha)*sin(state.betha) sin(state.alpha)]);
Wind=ones(a,1)*wind;
for i=1:a
Rot(i,:)=cross((lattice.COLLOC(i,:)-geo.CG),[state.P state.Q state.R]);
end
veloc=Wind+Rot;
bc(:,2)=sum(lattice.N.*veloc,2)';
state.alpha=state.alpha-delta;
%%%%%%%
%%%%%
%betha derivative column
state.betha=state.betha+delta;
wind=V.*([cos(state.alpha)*cos(state.betha) -cos(state.alpha)*sin(state.betha) sin(state.alpha)]);
Wind=ones(a,1)*wind;
for i=1:a
Rot(i,:)=cross((lattice.COLLOC(i,:)-geo.CG),[state.P state.Q state.R]);
end
veloc=Wind+Rot;
bc(:,3)=sum(lattice.N.*veloc,2)';
state.betha=state.betha-delta;
%%%%%%%
%%%%%
%rollrate, P, derivative column
state.P=state.P+delta;
wind=V.*([cos(state.alpha)*cos(state.betha) -cos(state.alpha)*sin(state.betha) sin(state.alpha)]);
Wind=ones(a,1)*wind;
for i=1:a
Rot(i,:)=cross((lattice.COLLOC(i,:)-geo.CG),[state.P state.Q state.R]);
end
veloc=Wind+Rot;
bc(:,4)=sum(lattice.N.*veloc,2)';
state.P=state.P-delta;
%%%%%%%
%%%%%
%pitchrate, Q, derivative column
state.Q=state.Q+delta;
wind=V.*([cos(state.alpha)*cos(state.betha) -cos(state.alpha)*sin(state.betha) sin(state.alpha)]);
Wind=ones(a,1)*wind;
for i=1:a
Rot(i,:)=cross((lattice.COLLOC(i,:)-geo.CG),[state.P state.Q state.R]);
end
veloc=Wind+Rot;
bc(:,5)=sum(lattice.N.*veloc,2)';
state.Q=state.Q-delta;
%%%%%%
%%%%%
%yaw rate, R, derivative column
state.R=state.R+delta;
wind=V.*([cos(state.alpha)*cos(state.betha) -cos(state.alpha)*sin(state.betha) sin(state.alpha)]);
Wind=ones(a,1)*wind;
for i=1:a
Rot(i,:)=cross((lattice.COLLOC(i,:)-geo.CG),[state.P state.Q state.R]);
end
veloc=Wind+Rot;
bc(:,6)=sum(lattice.N.*veloc,2)';
state.R=state.R-delta;
%%%%%%
%Oh god im tired, I bet
%there will be a bug here
%%%%%%%%%%%%%%%%%%%%%%%%
ntece=sum(sum(geo.flapped)); %Number of trailing edge control effectors
[n,m]=find(geo.flapped');
for rudder=1:ntece
geo.flap_vector(m(rudder),n(rudder))=geo.flap_vector(m(rudder),n(rudder))+delta;
[lattice,ref]=fLattice_setup2(geo,state,0);
wind=V.*([cos(state.alpha)*cos(state.betha) -cos(state.alpha)*sin(state.betha) sin(state.alpha)]);
Wind=ones(a,1)*wind;
for i=1:a
Rot(i,:)=cross((lattice.COLLOC(i,:)-geo.CG),[state.P state.Q state.R]);
end
veloc=Wind+Rot;
bc(:,6+rudder)=sum(lattice.N.*veloc,2)';
geo.flap_vector(m(rudder),n(rudder))=geo.flap_vector(m(rudder),n(rudder))-delta;
%no need to reset lattice as it will be done in next loop
end
end %function