-
Notifications
You must be signed in to change notification settings - Fork 0
/
ddpg_agent.py
242 lines (204 loc) · 10.7 KB
/
ddpg_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import numpy as np
import random
import copy
from collections import namedtuple, deque
from model import Actor, Critic
import torch
import torch.nn.functional as F
import torch.optim as optim
BUFFER_SIZE = int(1e5) # replay buffer size
BATCH_SIZE = 128 # minibatch size
GAMMA = 0.99 # discount factor
TAU = 1e-3 # for soft update of target parameters
LR_ACTOR = 1e-4 # learning rate of the actor
LR_CRITIC = 1e-4 # learning rate of the critic
WEIGHT_DECAY = 0 # L2 weight decay
SIGMA = 0.1 # OU Noise sigma
ACTOR_NN_SIZE = [400, 300] # dimension of hidden layers for actor fully connected NN
CRITIC_NN_SIZE = [400, 300] # dimension of hidden layers for critic fully connected NN
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
class DDPGAgent:
"""DDPG agent implementation."""
def __init__(self, state_size, action_size, random_seed,
buffer_size=BUFFER_SIZE,
batch_size=BATCH_SIZE,
gamma=GAMMA,
tau=TAU,
lr_actor=LR_ACTOR,
lr_critic=LR_CRITIC,
weight_decay=WEIGHT_DECAY,
sigma=SIGMA,
actor_nn_size=ACTOR_NN_SIZE,
critic_nn_size=CRITIC_NN_SIZE,
batch_norm=True,
clip_grad_norm=True):
"""
Initialization of the Agent
:param state_size (int): dimension of each state
:param action_size (int): dimension of each action
:param random_seed (int): random seed
:param buffer_size (int): number of samples that the replay buffer can store
:param batch_size (int): number of samples used for learning for each learning step
:param gamma (float): reward discount factor of the MDP problem
:param tau (float): soft update factor, between 0 and 1, varies how fast the target network are updated
:param lr_actor (float): learning rate for the actor
:param lr_critic (float): learning rate for the critic
:param weight_decay (float): weight decay regularization factor
:param sigma (float): OU noise process randomness weight
:param actor_nn_size [int,int]: 2 dim array defining the number of units in the actor NN for the two fc layers
:param critic_nn_size [int,int]: 2 dim array defining the number of units in the critic NN for the two fc layers
:param batch_norm (bool): flag to control the use of batch normalization
:param clip_grad_norm (bool): flag to control the use of critic backprop updated gradient clipping
"""
# Hyperparameters
self.buffer_size = buffer_size
self.batch_size = batch_size
self.gamma = gamma
self.tau = tau
self.lr_actor = lr_actor
self.lr_critic = lr_critic
self.weight_decay = weight_decay
self.sigma = sigma
self.actor_nn_size = actor_nn_size
self.critic_nn_size = critic_nn_size
self.batch_norm = batch_norm
self.clip_grad_norm = clip_grad_norm
self.state_size = state_size
self.action_size = action_size
self.seed = random.seed(random_seed)
# Actor Network (w/ Target Network)
self.actor_local = Actor(state_size, action_size, random_seed, self.actor_nn_size[0], self.actor_nn_size[1], self.batch_norm).to(device)
self.actor_target = Actor(state_size, action_size, random_seed, self.actor_nn_size[0], self.actor_nn_size[1], self.batch_norm).to(device)
self.actor_optimizer = optim.Adam(self.actor_local.parameters(), lr=self.lr_actor)
# Critic Network (w/ Target Network)
self.critic_local = Critic(state_size, action_size, random_seed, self.critic_nn_size[0], self.critic_nn_size[1], self.batch_norm).to(device)
self.critic_target = Critic(state_size, action_size, random_seed, self.critic_nn_size[0], self.critic_nn_size[1], self.batch_norm).to(device)
self.critic_optimizer = optim.Adam(self.critic_local.parameters(), lr=self.lr_critic,
weight_decay=self.weight_decay)
# Noise process
self.noise = OUNoise(action_size, random_seed, sigma=self.sigma)
# Replay memory
self.memory = ReplayBuffer(action_size, self.buffer_size, self.batch_size, random_seed)
def step(self, state, action, reward, next_state, done):
"""Save experience in replay memory, and use random sample from buffer to learn."""
# Save experience / reward
self.memory.add(state, action, reward, next_state, done)
# Learn, if enough samples are available in memory
if len(self.memory) > self.batch_size:
experiences = self.memory.sample()
self.learn(experiences, self.gamma)
def act(self, state, add_noise=True, noise_damping=1):
"""Returns actions for given state as per current policy."""
state = torch.from_numpy(state).float().to(device)
self.actor_local.eval()
with torch.no_grad():
action = self.actor_local(state).cpu().data.numpy()
self.actor_local.train()
if add_noise:
action += self.noise.sample() * noise_damping
return np.clip(action, -1, 1)
def reset(self):
self.noise.reset()
def learn(self, experiences, gamma):
"""Update policy and value parameters using given batch of experience tuples.
Q_targets = r + γ * critic_target(next_state, actor_target(next_state))
where:
actor_target(state) -> action
critic_target(state, action) -> Q-value
Params
======
experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples
gamma (float): discount factor
"""
states, actions, rewards, next_states, dones = experiences
# ---------------------------- update critic ---------------------------- #
# Get predicted next-state actions and Q values from target models
actions_next = self.actor_target(next_states)
Q_targets_next = self.critic_target(next_states, actions_next)
# Compute Q targets for current states (y_i)
Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))
# Compute critic loss
Q_expected = self.critic_local(states, actions)
critic_loss = F.mse_loss(Q_expected, Q_targets)
# Minimize the loss
self.critic_optimizer.zero_grad()
critic_loss.backward()
if self.clip_grad_norm:
torch.nn.utils.clip_grad_norm_(self.critic_local.parameters(), 1)
self.critic_optimizer.step()
# ---------------------------- update actor ---------------------------- #
# Compute actor loss
actions_pred = self.actor_local(states)
actor_loss = -self.critic_local(states, actions_pred).mean()
# Minimize the loss
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
# ----------------------- update target networks ----------------------- #
self.soft_update(self.critic_local, self.critic_target, self.tau)
self.soft_update(self.actor_local, self.actor_target, self.tau)
@staticmethod
def soft_update(local_model, target_model, tau):
"""Soft update model parameters.
θ_target = τ*θ_local + (1 - τ)*θ_target
Params
======
local_model: PyTorch model (weights will be copied from)
target_model: PyTorch model (weights will be copied to)
tau (float): interpolation parameter
"""
for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
target_param.data.copy_(tau*local_param.data + (1.0-tau)*target_param.data)
def load_weights(self, actor_weights_file, critic_weights_file):
self.actor_local.load_state_dict(torch.load(actor_weights_file))
self.actor_target.load_state_dict(torch.load(actor_weights_file))
self.critic_local.load_state_dict(torch.load(critic_weights_file))
self.critic_target.load_state_dict(torch.load(critic_weights_file))
class OUNoise:
"""Ornstein-Uhlenbeck process."""
def __init__(self, size, seed, mu=0., theta=0.15, sigma=0.2):
"""Initialize parameters and noise process."""
self.mu = mu * np.ones(size)
self.theta = theta
self.sigma = sigma
self.seed = random.seed(seed)
self.reset()
def reset(self):
"""Reset the internal state (= noise) to mean (mu)."""
self.state = copy.copy(self.mu)
def sample(self):
"""Update internal state and return it as a noise sample."""
x = self.state
dx = self.theta * (self.mu - x) + self.sigma * np.array([random.random() for i in range(len(x))])
self.state = x + dx
return self.state
class ReplayBuffer:
"""Fixed-size buffer to store experience tuples."""
def __init__(self, action_size, buffer_size, batch_size, seed):
"""Initialize a ReplayBuffer object.
Params
======
buffer_size (int): maximum size of buffer
batch_size (int): size of each training batch
"""
self.action_size = action_size
self.memory = deque(maxlen=buffer_size) # internal memory (deque)
self.batch_size = batch_size
self.experience = namedtuple("Experience", field_names=["state", "action", "reward", "next_state", "done"])
self.seed = random.seed(seed)
def add(self, state, action, reward, next_state, done):
"""Add a new experience to memory."""
e = self.experience(state, action, reward, next_state, done)
self.memory.append(e)
def sample(self):
"""Randomly sample a batch of experiences from memory."""
experiences = random.sample(self.memory, k=self.batch_size)
states = torch.from_numpy(np.vstack([e.state for e in experiences if e is not None])).float().to(device)
actions = torch.from_numpy(np.vstack([e.action for e in experiences if e is not None])).float().to(device)
rewards = torch.from_numpy(np.vstack([e.reward for e in experiences if e is not None])).float().to(device)
next_states = torch.from_numpy(np.vstack([e.next_state for e in experiences if e is not None])).float().to(device)
dones = torch.from_numpy(np.vstack([e.done for e in experiences if e is not None]).astype(np.uint8)).float().to(device)
return (states, actions, rewards, next_states, dones)
def __len__(self):
"""Return the current size of internal memory."""
return len(self.memory)