-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathensemble_basic.py
367 lines (317 loc) · 12.6 KB
/
ensemble_basic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
import argparse
import concurrent.futures
import datetime
import os
import pickle
import random
from pathlib import Path
import datasets
import torch
import transformers
import utils
def parse_args():
ap = argparse.ArgumentParser()
default_help = "(default: %(default)s)"
ap.add_argument("--save-dir", type=str, default="checkpoints", help=default_help)
ap.add_argument("--save-all-epochs", action="store_true", default=False, help=default_help)
ap.add_argument("--gpus", nargs="+", default=list(range(8)), help=default_help)
ap.add_argument("--seq-per-gpu", action="store_true", default=False, help=default_help)
ap.add_argument("--num-models", type=int, default=8, help=default_help)
ap.add_argument("--dataset", type=str, default="sst2", help=default_help)
ap.add_argument("--limit", type=int, default=-1, help=default_help)
ap.add_argument("--distillation-dataset", type=str, default=None, help=default_help)
ap.add_argument("--augmented", action="store_true", default=False, help=default_help)
ap.add_argument("--bagging", action="store_true", default=False, help=default_help)
ap.add_argument("--extract-subnetwork", action="store_true", default=False, help=default_help)
ap.add_argument("--architecture-selection", type=str, default="fixed", help=default_help)
ap.add_argument("--num-epochs", type=int, default=50, help=default_help)
ap.add_argument("--batch-size", type=int, default=32, help=default_help)
ap.add_argument("--val-batch-size", type=int, default=32, help=default_help)
ap.add_argument("--lr", type=float, default=1e-3, help=default_help)
ap.add_argument("-wd", "--weight-decay", type=float, default=0.0, help=default_help)
ap.add_argument("--warmup-steps", type=int, default=0, help=default_help)
return ap.parse_args()
def train_one_epoch(
model,
train_dataloader,
val_dataloader,
optimizer,
device,
arch,
scheduler=None,
distillation=False,
print_freq=50,
prefix="",
):
model = model.train()
metrics = {}
train_losses = {}
for i, example in enumerate(train_dataloader):
input_ids = example[0].to(device)
attention_mask = example[1].to(device)
labels = example[2].to(device)
outputs = model(
input_ids=input_ids,
attention_mask=attention_mask,
labels=labels,
output_hidden_states=True,
)
cls_loss = outputs.loss
if distillation:
bert_last_hidden_state = example[3].to(device)
distill_loss = utils.distillation_loss(
outputs["hidden_states"][-1],
bert_last_hidden_state,
mask=attention_mask,
)
loss = cls_loss + distill_loss
else:
loss = cls_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
if scheduler:
scheduler.step()
if i % print_freq == 0:
if distillation:
print(f"{prefix} Step {i + 1} of {len(train_dataloader)}: cls loss = "
f"{cls_loss.item()}, distill loss = {distill_loss.item()}, total loss = "
f"{loss.item()}")
else:
print(f"{prefix} Step {i + 1} of {len(train_dataloader)}: loss = {loss.item()}")
train_losses[i] = loss.item()
model = model.eval()
metrics = {
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"loss": loss.item(),
"train_acc": utils.compute_acc(model, train_dataloader, device=device),
"val_acc": utils.compute_acc(model, val_dataloader, device=device),
"train_losses": train_losses,
"arch": arch,
}
print(f"{prefix} [{datetime.datetime.now()}] Train accuracy: {metrics['train_acc']}")
print(f"{prefix} [{datetime.datetime.now()}] Validation accuracy: {metrics['val_acc']}")
return metrics
# TODO(piyush) Turn this into a decorator and put in utils.py
def train_wrapper(kwargs):
"""
A useful wrapper to use when parallelizing the train() function.
"""
return train(**kwargs)
def train(
task_id,
model,
arch,
train_dataloader,
val_dataloader,
device,
save_dir,
lr=1e-5,
weight_decay=0.0,
distillation=False,
warmup_steps=0,
num_epochs=100,
print_freq=50,
save_all=False,
):
prefix = f"[Process {task_id}]"
os.makedirs(save_dir, exist_ok=True)
print(f"{prefix} Created {save_dir}")
model = model.to(device)
print(f"{prefix} Moved model to device {device}")
metrics = {}
optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=0.9, weight_decay=weight_decay)
scheduler = None
if warmup_steps != 0:
scheduler = transformers.get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=warmup_steps,
num_training_steps=len(train_dataloader) * num_epochs,
)
print(f"[{datetime.datetime.now()}] Starting training")
prev_val_acc = - float("inf")
for epoch in range(num_epochs):
epoch_metrics = train_one_epoch(
model,
train_dataloader,
val_dataloader,
optimizer,
device,
arch,
scheduler=scheduler,
distillation=distillation,
print_freq=print_freq,
prefix=f"{prefix} [Epoch {epoch}]",
)
metrics[epoch] = epoch_metrics
if save_all or epoch_metrics["val_acc"] >= prev_val_acc:
save_path = os.path.join(save_dir, f"model_epoch{epoch}.pt")
torch.save(epoch_metrics, save_path)
print(f"{prefix} Saved model checkpoint to {save_path}")
prev_val_acc = max(epoch_metrics["val_acc"], prev_val_acc)
return metrics
def train_share_gpu(jobs):
prefix = f"[Process {jobs[0]['task_id']}]"
for job in jobs:
os.makedirs(job["save_dir"], exist_ok=True)
print(f"{prefix} Created {job['save_dir']}")
device = jobs[0]["device"]
num_epochs = jobs[0]["num_epochs"]
optimizers = [
torch.optim.SGD(
job["model"].parameters(),
lr=job["lr"],
momentum=0.9,
weight_decay=job["weight_decay"],
)
for job in jobs
]
# TODO - support scheduler
if jobs[0]["warmup_steps"] != 0:
print("WARNING: Scheduler not supported with --seq-per-gpu")
prev_val_accs = [- float("inf") for _ in range(len(jobs))]
metrics = [{} for _ in range(len(jobs))]
for epoch in range(num_epochs):
for i, job in enumerate(jobs):
job_prefix = f"{prefix} [Model {i}]"
print(f"{job_prefix} Starting training for epoch {epoch}")
model = job["model"].to(device)
print(f"{job_prefix} Moved model to device {device}")
epoch_metrics = train_one_epoch(
model,
job["train_dataloader"],
job["val_dataloader"],
optimizers[i],
device,
job["arch"],
save_path=os.path.join(job["save_dir"], f"model_epoch{epoch}.pt"),
distillation=job["distillation"],
prefix=f"{job_prefix} [Epoch {epoch}]",
)
metrics[i][epoch] = epoch_metrics
if job["save_all"] or epoch_metrics["val_acc"] >= prev_val_accs[i]:
save_path = os.path.join(save_dir, f"model_epoch{epoch}.pt")
torch.save(epoch_metrics, save_path)
print(f"{prefix} Saved model checkpoint to {save_path}")
prev_val_accs[i] = max(epoch_metrics["val_acc"], prev_val_accs[i])
return metrics
def main(args):
print(f"Save dir: {args.save_dir}")
# Determine devices
if args.gpus is None or len(args.gpus) == 0:
print("WARNING: Using CPU")
gpus = ["cpu"]
else:
gpus = [f"cuda:{i}" for i in args.gpus]
print(f"Using GPUs: {', '.join(gpus)}")
# Set up data loaders.
print(f"Building dataloaders for dataset: {args.dataset}")
if "TOKENIZERS_PARALLELISM" not in os.environ:
os.environ["TOKENIZERS_PARALLELISM"] = "false"
tokenizer = transformers.BertTokenizer.from_pretrained("bert-base-uncased")
if args.augmented:
aug_ds_path = Path(f"data/augmented_train_ds/{args.dataset}_augmented.pt")
tensors_ds = list(torch.load(aug_ds_path))[: args.limit]
partition_size = len(tensors_ds) // args.num_models + 1
train_dataloaders = [
torch.utils.data.DataLoader(
tensors_ds[i : i + partition_size], batch_size=args.batch_size
)
for i in range(0, len(tensors_ds), partition_size)
]
print(f"Partitioned {len(tensors_ds)} total training samples")
ds = datasets.load_dataset("glue", args.dataset)
val_dataloader = utils.create_dataloader(
ds["validation"], tokenizer, args.val_batch_size, args.dataset
)
else:
if args.distillation_dataset is not None:
with open(args.distillation_dataset, "rb") as f:
ds = pickle.load(f)
print(f"Loaded distillation dataset from {args.distillation_dataset}")
else:
ds = datasets.load_dataset("glue", args.dataset)
train_ds = list(ds["train"])[: args.limit]
random.shuffle(train_ds)
if args.bagging:
train_dataloaders = [
utils.create_dataloader(
[
train_ds[int(random.random() * len(train_ds))]
for _ in range(len(train_ds))
],
tokenizer,
args.batch_size,
args.dataset,
distillation=args.distillation_dataset is not None,
)
for _ in range(args.num_models)
]
print(f"Created {args.num_models} datasets by sampling with replacement")
else:
partition_size = len(train_ds) // args.num_models
train_dataloaders = [
utils.create_dataloader(
train_ds[i : i + partition_size],
tokenizer,
args.batch_size,
args.dataset,
distillation=args.distillation_dataset is not None,
)
for i in range(0, len(train_ds), partition_size)
]
print(f"Partitioned {len(train_ds)} total training samples")
val_dataloader = utils.create_dataloader(
ds["validation"], tokenizer, args.val_batch_size, args.dataset
)
# Build models (and check param counts).
models, configs = utils.build_models(
num_models=args.num_models,
extract_subnetwork=args.extract_subnetwork,
architecture_selection=args.architecture_selection,
)
utils.check_param_counts(models)
# Setup jobs.
jobs = [
{
"task_id": i,
"model": models[i],
"arch": configs[i],
"train_dataloader": train_dataloaders[i],
"val_dataloader": val_dataloader,
"device": gpus[i % len(gpus)],
"lr": args.lr,
"num_epochs": args.num_epochs,
"save_dir": os.path.join(args.save_dir, str(i)),
"distillation": args.distillation_dataset is not None,
"weight_decay": args.weight_decay,
"warmup_steps": args.warmup_steps,
"save_all": args.save_all_epochs,
}
for i in range(args.num_models)
]
# Train.
if args.num_models == 1:
metrics = train(**jobs[0])
elif args.seq_per_gpu:
# Collect jobs by GPU.
jobs_per_gpu = {gpu: [] for gpu in gpus}
for job in jobs:
jobs_per_gpu[job["device"]].append(job)
with torch.multiprocessing.Pool(len(jobs_per_gpu)) as pool:
metrics = pool.map(train_share_gpu, jobs_per_gpu.values())
else:
with torch.multiprocessing.Pool(len(jobs)) as pool:
metrics = pool.map(train_wrapper, jobs)
# Save final metrics.
metrics_save_path = os.path.join(args.save_dir, "all_metrics.pkl")
with open(metrics_save_path, "wb") as f:
pickle.dump(metrics_save_path, f)
print(f"Done. Saved all metrics to: {metrics_save_path}")
if __name__ == "__main__":
# Force exec() after fork() to prevent deadlocks.
torch.multiprocessing.set_start_method("spawn", force=True)
# Fixes too many open files error. (See https://github.com/pytorch/pytorch/issues/11201)
torch.multiprocessing.set_sharing_strategy("file_system")
main(parse_args())