Skip to content

Latest commit

 

History

History
294 lines (189 loc) · 7.62 KB

Day32 - Greedy-Part2.md

File metadata and controls

294 lines (189 loc) · 7.62 KB

Day32 - Greedy Part2

Contents


Medium

You are given an integer array prices where prices[i] is the price of a given stock on the ith day.

On each day, you may decide to buy and/or sell the stock. You can only hold at most one share of the stock at any time. However, you can buy it then immediately sell it on the same day.

Find and return the maximum profit you can achieve.

 

Example 1:

Input: prices = [7,1,5,3,6,4]
Output: 7
Explanation: Buy on day 2 (price = 1) and sell on day 3 (price = 5), profit = 5-1 = 4.
Then buy on day 4 (price = 3) and sell on day 5 (price = 6), profit = 6-3 = 3.
Total profit is 4 + 3 = 7.

Example 2:

Input: prices = [1,2,3,4,5]
Output: 4
Explanation: Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
Total profit is 4.

Example 3:

Input: prices = [7,6,4,3,1]
Output: 0
Explanation: There is no way to make a positive profit, so we never buy the stock to achieve the maximum profit of 0.

 

Constraints:

  • 1 <= prices.length <= 3 * 104
  • 0 <= prices[i] <= 104

My Solution 1:greedy - positive diff

class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        
        count = 0
        for i in range(len(prices) -1):
            count = count + max(prices[i+1] - prices[i], 0)

        return count 

Complexity Analysis:

  • Time Complexity:
    O(n)

  • Space Complexity:
    O(1)


Dividing Line

Medium

You are given an integer array nums. You are initially positioned at the array's first index, and each element in the array represents your maximum jump length at that position.

Return true if you can reach the last index, or false otherwise.

 

Example 1:

Input: nums = [2,3,1,1,4]
Output: true
Explanation: Jump 1 step from index 0 to 1, then 3 steps to the last index.

Example 2:

Input: nums = [3,2,1,0,4]
Output: false
Explanation: You will always arrive at index 3 no matter what. Its maximum jump length is 0, which makes it impossible to reach the last index.

 

Constraints:

  • 1 <= nums.length <= 104
  • 0 <= nums[i] <= 105

My Solution 1:greedy - longest cover

class Solution:
    def canJump(self, nums: List[int]) -> bool:
        
        cover = 0

        for index, jump in enumerate(nums):
            # if max cover cannot reach index
            # just return False

            if cover < index:
                return False

            # pick up the longest cover jump
            cover = max(cover, index + jump)

        #never meet the case of False
        return True
``
**Complexity Analysis:**  

- *`Time Complexity`*:<br>
O(n)
  
- *`Space Complexity`*:<br>
O(1)
<br>

![Dividing Line](https://github.com/samuelusc/Algomuscle/blob/main/assets/CatDividing.png)
<br>




<h2 id = "45"><a href="https://leetcode.com/problems/jump-game-ii">45. Jump Game II</a></h2><h3>Medium</h3><p>You are given a <strong>0-indexed</strong> array of integers <code>nums</code> of length <code>n</code>. You are initially positioned at <code>nums[0]</code>.</p>

<p>Each element <code>nums[i]</code> represents the maximum length of a forward jump from index <code>i</code>. In other words, if you are at <code>nums[i]</code>, you can jump to any <code>nums[i + j]</code> where:</p>

<ul>
	<li><code>0 &lt;= j &lt;= nums[i]</code> and</li>
	<li><code>i + j &lt; n</code></li>
</ul>

<p>Return <em>the minimum number of jumps to reach </em><code>nums[n - 1]</code>. The test cases are generated such that you can reach <code>nums[n - 1]</code>.</p>

<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>

<pre>
<strong>Input:</strong> nums = [2,3,1,1,4]
<strong>Output:</strong> 2
<strong>Explanation:</strong> The minimum number of jumps to reach the last index is 2. Jump 1 step from index 0 to 1, then 3 steps to the last index.
</pre>

<p><strong class="example">Example 2:</strong></p>

<pre>
<strong>Input:</strong> nums = [2,3,0,1,4]
<strong>Output:</strong> 2
</pre>

<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>

<ul>
	<li><code>1 &lt;= nums.length &lt;= 10<sup>4</sup></code></li>
	<li><code>0 &lt;= nums[i] &lt;= 1000</code></li>
	<li>It&#39;s guaranteed that you can reach <code>nums[n - 1]</code>.</li>
</ul>






### My Solution 1:_`greedy - longest cover`_  

  
```python

class Solution:
    def jump(self, nums: List[int]) -> int:
        
        last, cover, count = 0, 0, 0

        for i in range(len(nums) - 1):
            cover = max(cover, nums[i] + i)

            if i == last:
                count += 1
                last = cover

        return count

Complexity Analysis:

  • Time Complexity:
    O(n)

  • Space Complexity:
    O(1)


Dividing Line

Jump Game - MicroSoft

You are given an array of non-negative integers arr and a start index. When you are at an index i, you can move left or right by arr[i]. Your task is to figure out if you can reach value 0.

Example 1:

Input: arr = [3, 4, 2, 3, 0, 3, 1, 2, 1], start = 7

Output: true

Explanation: left -> left -> right

Example 2:

Input: arr = [3, 2, 1, 3, 0, 3, 1, 2, 1], start = 2

Output: false

My Solution 1:Greedy-BFS

from typing import List
from collections import deque
def jump_game(arr: List[int], start: int) -> bool:
    # 我们使用BFS(适合寻找最短路径)
    visited = set()
    queue = deque([start])
    
    while queue:
        size = len(queue)
        
        for i in range(size):
            cur_index = queue.popleft()
            if cur_index in visited:
                continue
            visited.add(cur_index)
            
            if arr[cur_index] == 0:
                return True
            
            if cur_index + arr[cur_index] < len(arr):
                queue.append(cur_index + arr[cur_index])
            if cur_index - arr[cur_index] >= 0:
                queue.append(cur_index - arr[cur_index])
                
    return False

if __name__ == '__main__':
    arr = [int(x) for x in input().split()]
    start = int(input())
    res = jump_game(arr, start)
    print('true' if res else 'false')

Complexity Analysis:

  • Time Complexity:
    O(n)

  • Space Complexity:
    O(n)