Skip to content

Latest commit

 

History

History
57 lines (43 loc) · 1.2 KB

README.md

File metadata and controls

57 lines (43 loc) · 1.2 KB

Kubeflow Spark

Orchestrate Spark Jobs using Kubeflow, a modern Machine Learning orchestration framework. Read related blog post.

Requirements

  1. Kubernetes cluster (1.17+)
  2. Kubeflow pipelines (1.7.0+)
  3. Spark Operator (1.1.0+)
  4. Python (3.6+)
  5. kubectl
  6. helm3

Getting started

Run make all to start everything and skip to step 6 or:

  1. Start your local cluster
./scripts/start-minikube.sh
  1. Install Kubeflow Pipelines
./scripts/install-kubeflow.sh
  1. Install Spark Operator
./scripts/install-spark-operator.sh
  1. Create Spark Service Account and add permissions
./scripts/add-spark-rbac.sh
  1. Make Kubeflow UI reachable
  • a. (Optional) Add Kubeflow UI Ingress
./scripts/add-kubeflow-ui-ingress.sh
  • b. (Optional) Forward service port, e.g:
kubectl port-forward -n kubeflow svc/ml-pipeline-ui 8005:80
  1. Create Kubeflow pipeline definition file
python kubeflow_pipeline.py
  1. Navigate to the Pipelines UI and upload the newly created pipeline from file spark_job_pipeline.yaml

  2. Trigger a pipeline run. Make sure to set spark-sa as Service Account for the execution.

  3. Enjoy your orchestrated Spark job execution!