-
Notifications
You must be signed in to change notification settings - Fork 1
/
lcsubstr.cpp
93 lines (79 loc) · 2.41 KB
/
lcsubstr.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
// Lorenz Schiffmann, July 2021
// Space optimized CPP implementation to print
// longest common substring.
#include <string>
#include <vector>
#include "utf8_unicode.hpp"
#include "pylcs.hpp"
using std::string;
using std::vector;
using std::max;
// Function to find longest common substring.
string lcstr(const string &str1, const string &str2)
{
if (str1 == "" || str2 == "")
return "";
structRet ret;
ret = lcs2_length_(str1, str2);
vector<string> str1v = utf8_split(str1);
return vect2str(slice(str1v, ret.start, ret.start + ret.max - 1));
}
// modified version from
//https://www.geeksforgeeks.org/printing-longest-common-subsequence/
// Function to find longest common subsequence
/* Returns length of LCS for X[0..m-1], Y[0..n-1] */
string lcseq( const string &X, const string &Y)
{
if (X == "" || X == "")
return "";
int m = 0;
int n = 0;
vector<string> X_= utf8_split(X);
vector<string> Y_= utf8_split(Y);
m = X_.size();
n = Y_.size();
//int L[m+1][n+1];
vector<vector<int>> L(m + 1, vector<int>(n + 1));
/* Following steps build L[m+1][n+1] in bottom up fashion. Note
that L[i][j] contains length of LCS of X[0..i-1] and Y[0..j-1] */
for (int i=0; i<=m; i++)
{
for (int j=0; j<=n; j++)
{
if (i == 0 || j == 0)
L[i][j] = 0;
else if (X_[i-1] == Y_[j-1])
L[i][j] = L[i-1][j-1] + 1;
else
L[i][j] = max(L[i-1][j], L[i][j-1]);
}
}
// Following code is used to print LCS
int index = L[m][n];
// Create a character array to store the lcs string
//string lcs[index+1];
vector<string> lcs(index);
//lcs[index] = '\0'; // Set the terminating character
// Start from the right-most-bottom-most corner and
// one by one store characters in lcs[]
int i = m, j = n;
while (i > 0 && j > 0)
{
// If current character in X[] and Y are same, then
// current character is part of LCS
if (X_[i-1] == Y_[j-1])
{
lcs[index-1] = X_[i-1]; // Put current character in result
i--; j--; index--; // reduce values of i, j and index
}
// If not same, then find the larger of two and
// go in the direction of larger value
else if (L[i-1][j] > L[i][j-1])
i--;
else
j--;
}
// Print the lcs
//cout << "LCS of " << X << " and " << Y << " is " << lcs << endl;
return vect2str(lcs);
}