-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathHMM-LSTM-RNN-CNN.Rmd
50 lines (40 loc) · 5.11 KB
/
HMM-LSTM-RNN-CNN.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
---
title: "HMM, LSTM, RNN, CNN Statistical Models"
author: "®γσ, Lian Hu"
date: "4/1/2021"
output: html_document
---
**Draft**
> **如何缓解量化交易中存在的"低信噪比"现象?**
金融市场的数据信噪比特别低,得到信息更多的背后是得到了更多的噪音。举例来说:假如获得了100个单位信息,但是其中有90单位信息是噪音,剩下的10单位是我们真正想要获得的信息。噪音会导致构建的模型变得容易过拟合,这也是很多回测非常好的策略实盘失效的原因。如果能缓解量化交易中存在的"低信噪比",就可以进一步模型的精度。<br><br>[*首先,你得有指标度量信噪比。然后,下单数量应该与信噪比成正比*]{style="color:RoyalBlue"}
引用:[如何缓解量化交易中存在的"低信噪比"现象?](https://www.zhihu.com/question/534058888)
# 参考文献
- [Discussion Posts](https://rpubs.com/priyankaigit/disc-wk4)
- [Comparing time series forecasting models in action](http://rstudio-pubs-static.s3.amazonaws.com/15285_1260a766696d4960b9c63442a399831e.html)
- [Airport Dash](https://rpubs.com/nabiilahardini/ts-flight)
- [Time Series Analysis - Spring 2018](https://rpubs.com/hsafaie/381547)
- [Using the `forecastHybrid` package](https://cran.r-project.org/web/packages/forecastHybrid/vignettes/forecastHybrid.html)
- [Interest Rate Times Series Forecast Using LSTM Neural Network](https://rpubs.com/jwcb1025/int_rate_lstm?fbclid=IwAR2sRCrk2mxUx_1oKZuEwWcm2RX_BjRdkOMiVUAjoO7uTl57T5kQouj_GGo)
- [rwanjohi/Time-series-forecasting-using-LSTM-in-R/LSTM Time series forecasting.R](https://github.com/rwanjohi/Time-series-forecasting-using-LSTM-in-R/blob/master/LSTM%20Time%20series%20forecasting.R?fbclid=IwAR3h9GTNkx4m7txM6uDCq0O2OgUjsbp1e6qUhOHYCaKF4ypRm6Kskldi-Es)
- [Time series forecasting: from ARIMA to LSTM](https://stats.stackexchange.com/a/478638/68357)
- [Is Prophet Really Better than ARIMA for Forecasting Time Series Data?](https://blog.exploratory.io/is-prophet-better-than-arima-for-forecasting-time-series-fa9ae08a5851)
- [A Comparison between LSTM and Facebook Prophet Models - A Financal Forecasting Case Study](https://github.com/scibrokes/real-time-fxcm/blob/master/reference/A%20Comparison%20between%20LSTM%20and%20Facebook%20Prophet%20Models%20-%20A%20Financal%20Forecasting%20Case%20Study.pdf)
- [Stock Price Forecasting Using Time Series Analysis, Machine Learning and single layer neural network Models](https://rpubs.com/kapage/523169)
- [深度学习做股票预测靠谱吗?](https://www.zhihu.com/question/54542998/answer/2361320437)
- [如何缓解量化交易中存在的"低信噪比"现象?](https://www.zhihu.com/question/534058888)
- [R语言隐马尔可夫模型HMM连续序列重要性重抽样CSIR估计随机波动率模型SV分析股票收益率时间序列](http://tecdat.cn/r%e8%af%ad%e8%a8%80%e9%9a%90%e9%a9%ac%e5%b0%94%e5%8f%af%e5%a4%ab%e6%a8%a1%e5%9e%8bhmm%e8%bf%9e%e7%bb%ad%e5%ba%8f%e5%88%97%e9%87%8d%e8%a6%81%e6%80%a7%e9%87%8d%e6%8a%bd%e6%a0%b7csir%e4%bc%b0%e8%ae%a1)
- [一文搞懂HMM(隐马尔可夫模型)](https://www.cnblogs.com/skyme/p/4651331.html)
- [PYTHON用RNN循环神经网络:LSTM长期记忆、GRU门循环单元、回归和ARIMA对COVID-19新冠疫情新增人数时间序列预测](http://tecdat.cn/python%e7%94%a8rnn%e5%be%aa%e7%8e%af%e7%a5%9e%e7%bb%8f%e7%bd%91%e7%bb%9c%ef%bc%9alstm%e9%95%bf%e6%9c%9f%e8%ae%b0%e5%bf%86%e3%80%81gru%e9%97%a8%e5%be%aa%e7%8e%af%e5%8d%95%e5%85%83%e3%80%81%e5%9b%9e)
- [用于NLP的PYTHON:使用KERAS的多标签文本LSTM神经网络分类](http://tecdat.cn/%e7%94%a8%e4%ba%8enlp%e7%9a%84python%ef%bc%9a%e4%bd%bf%e7%94%a8keras%e7%9a%84%e5%a4%9a%e6%a0%87%e7%ad%be%e6%96%87%e6%9c%aclstm%e7%a5%9e%e7%bb%8f%e7%bd%91%e7%bb%9c%e5%88%86%e7%b1%bb)
- [PYTHON用于NLP的SEQ2SEQ模型实例:用KERAS实现神经网络机器翻译](http://tecdat.cn/python%e7%94%a8%e4%ba%8enlp%e7%9a%84seq2seq%e6%a8%a1%e5%9e%8b%e5%ae%9e%e4%be%8b%e7%94%a8keras%e5%ae%9e%e7%8e%b0%e7%a5%9e%e7%bb%8f%e6%9c%ba%e5%99%a8%e7%bf%bb%e8%af%91)
- [R语言隐马尔可夫模型HMM连续序列重要性重抽样CSIR估计随机波动率模型SV分析股票收益率时间序列](http://tecdat.cn/r%e8%af%ad%e8%a8%80%e9%9a%90%e9%a9%ac%e5%b0%94%e5%8f%af%e5%a4%ab%e6%a8%a1%e5%9e%8bhmm%e8%bf%9e%e7%bb%ad%e5%ba%8f%e5%88%97%e9%87%8d%e8%a6%81%e6%80%a7%e9%87%8d%e6%8a%bd%e6%a0%b7csir%e4%bc%b0%e8%ae%a1)
- [PYTHON中利用长短期记忆模型LSTM进行时间序列预测分析 – 预测电力负荷数据](http://tecdat.cn/python%e4%b8%ad%e5%88%a9%e7%94%a8%e9%95%bf%e7%9f%ad%e6%9c%9f%e8%ae%b0%e5%bf%86%e6%a8%a1%e5%9e%8blstm%e8%bf%9b%e8%a1%8c%e6%97%b6%e9%97%b4%e5%ba%8f%e5%88%97%e9%a2%84%e6%b5%8b%e5%88%86%e6%9e%90)
- [PYTHON在KERAS中使用LSTM解决序列问题](http://tecdat.cn/python%e5%9c%a8keras%e4%b8%ad%e4%bd%bf%e7%94%a8lstm%e8%a7%a3%e5%86%b3%e5%ba%8f%e5%88%97%e9%97%ae%e9%a2%98)
- []()
- []()
- []()
- []()
<br><br>
---
[<img src="www/Scibrokes.png" height="14"/> Sςιβrοκεrs Trαdιηg®](http://www.scibrokes.com)<br>
<span style='color:RoyalBlue'>**[<img src="www/Scibrokes.png" height="14"/> 世博量化®](http://www.scibrokes.com)企业知识产权及版权所有,盗版必究。**</span>