-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathMyfxBookCom.Rmd
246 lines (183 loc) · 11.6 KB
/
MyfxBookCom.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
---
title: "<span style='color:Red'>myfxbook.Com</span>"
subtitle: "Forex Trading Platform Comparison 比较外汇交易平台"
author: "[®γσ, ξηg Lian Hu](https://englianhu.github.io/) <img src='www/quantitative trader 1.jpg' width='13'> <img src='www/RYU.jpg' width='15'> <img src='www/ENG.jpg' width='24'> ® <img src='www/xueba1.jpg' width='14'>"
date: "`r lubridate::today('Asia/Shanghai')`"
output:
html_document:
mathjax: https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js
number_sections: yes
toc: yes
toc_depth: 4
toc_float:
collapsed: yes
smooth_scroll: yes
code_folding: hide
css: CSSBackgrounds.css
---
<br>
# 介绍
<br>
```{r message=FALSE, warning=FALSE, results='asis'}
if(!require('BBmisc')) {
install.packages('BBmisc', dependencies = TRUE, INSTALL_opts = '--no-lock')
}
require('BBmisc')
pkg <- c('plyr', 'tidyverse', 'magrittr', 'readr', 'readxl', 'tidyr', 'MASS',
'knitr', 'kableExtra', 'forecast', 'formattable', 'DT', 'echarts4r',
'lubridate', 'highcharter', 'htmltools', 'readr', 'pryr', 'sparklyr',
'lme4', 'microbenchmark', 'polynom', 'multipol', 'splines', 'leaps',
'highr', 'dplyr', 'pacman', 'lme4', 'nlme', 'rvest')
#plyr::l_ply(pkg, require, quietly = TRUE, character.only = TRUE, .print = FALSE)
suppressAll(lib(pkg))
rm(pkg)
#sc <- spark_connect(master = 'local')
conflict_prefer('filter', 'dplyr')
conflict_prefer('collapse', 'dplyr')
conflict_prefer('mutate', 'dplyr')
##
lnk <- 'https://www.myfxbook.com/forex-brokers'
```
<br>
# 外汇交易平台
![myFXbookCom.png](https://www.myfxbook.com/forex-brokers)
<br>
> Scalping,抢帽子是股市上进行股票短期买卖的投机技巧之一。它指的是在同一天先低价买进预计价格要上涨的股票,待股价上涨到一定幅度时,就迅速将刚买进之股票全部抛出;或者是先高价卖出预计价格将要下跌的股票,待股价果然下跌到某一价位时,就在当天买进先前抛出的相同种类和相同数量的股票。
由于抢帽子是以赚取股票的当天价差收益为目的,因此,一般把股市处于大幅震荡阶段,一天内股价上下波幅较大时,作为进行抢帽子的最佳时机。投资者进行抢帽子操作时,需要对股市行情有深入的研判,并能在行情变化时作出十分敏捷的反应。
抢帽子属于一种高风险的股票操作行为,除非经验丰富者,最好不要轻易尝试。
抢帽子与买空卖空的区别
抢帽子与买空卖空都是以预测股价走势为前提的投机交易行为,但两者也存在明显区别。 抢帽子属于现货交易,它是对一天内股价走势的预测,且一买一卖的两笔交易须在当天完成;而买空卖空则是一种期货交易,它是对今后一段时期股价走势的预测,且买卖的两笔交易既能以2~3天为间隔,也可能需3~5个月。
[**王牌交易员社区.......... ☑ 持续更新中,敬请关注 ٩(•̮̮̃•̃)۶** -Scalping法(抢帽子)](https://sites.google.com/site/acedaytrader/training/scalping)
## EliteQuant
```
A list of online resources for quantitative modeling, trading, portfolio management
There are lots of other valuable online resources. We are not trying to be exhaustive. Please feel free to send a pull request if you believe something is worth recommending. A general rule of thumb for open source projects is having already received 100 stars on github.
A list of online resources for quantitative modeling, trading, portfolio management
There are lots of other valuable online resources. We are not trying to be exhaustive. Please feel free to send a pull request if you believe something is worth recommending. A general rule of thumb for open source projects is having already received 100 stars on github.
Quantitative Trading Platform
Trading System
Quantitative Library
Quantitative Model
Trading API
Data Source
Cryptocurrency
Companies
Fintech
Websites Forums Blogs
```
与查询更多详情,请查阅 <https://github.com/EliteQuant>。
## 其他平台
>- 如果你会编写**通达信选股公式**,那么这已经就是一种量化思维。<br>- 能24小时盯盘当然是可行。**博森量化**机器人可以规避个人情绪,24小时自动交易~~
引用:[知乎:个人做量化交易是否可行呢?](https://www.zhihu.com/question/529408913)
>上海盈首信息科技有限公司总部位于中国金融中心上海。核心团队由一大批人工智能开发专业人士和证券行业资深研发专业人士组成。核心研究人员均拥有浙江大学、中国人民大学、哈佛大学、威尔士大学等知名大学学位。2005年至今,一直从事人工智能量化交易AI模型的研究、设计与开发,并在2006年实现了世界一流水平的量化模型回测年化回报率超过百分之几百。
作者:阿杰说量化
链接:https://www.zhihu.com/question/529408913/answer/2455065197
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
> 有的券商是会提供量化交易软件的,这样开户做量化就一条龙服务了,找客户经理,不仅佣金利率申请可以申请到比较优惠的水平,关于量化软件方面比较专业的问题也可以直接通过客户经理对接到技术部门的老师。现在券商做的量化软件有PTRADE和QMT,有专业和非专业两个版本,可以满足不同专业程度的需求,如果只想做做网格交易,篮子交易,条件单的,可以让客户经理帮忙申请普通版本,如果是需要自己编写程序,可以联系客户经理申请专业版本,根据自己需求来~~
作者:理财顾问刘经理
链接:https://www.zhihu.com/question/534517758/answer/2504117066
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
> 国内有一款(免费的)实盘量化交易平台,叫"**无限易**",大概长这个样子:
<img src='www/无限易 01.jpg' width='240'>
[量化交易工具你会选择哪个平台?](https://www.zhihu.com/question/534517758)
# 读取样本数据。
```{r, results = 'asis', warning = FALSE}
lnk2 <- paste0('https://www.myfxbook.com/reviews/brokers/9,', 1:96)
# https://stackoverflow.com/questions/47502188/scraping-table-using-html-table-in-r
tble <- lnk2 %>% llply(., function(x) {
tbl <- read_html(x) %>%
html_nodes('table') %>%
.[[3]] %>%
html_table(header = TRUE, fill = TRUE) %>%
#`colnames<-` (c('Brokers', 'Votes', 'Posts', 'Score')) %>%
#`rownames<-` (seq_len(nrow(.))) %>%
dplyr::rename(Brokers = 'Loading...') %>%
mutate(Brokers = factor(Brokers),
Votes = as.numeric(str_replace_all(Votes, '[^0-9]*', '')),
Posts = as.numeric(str_replace_all(Posts, '[^0-9]*', ''))) %>%
as_tibble %>%
dplyr::select(-Score)
tbl
})
```
```{r}
smp %>% glimpse
```
<span style='color:Orange'>*图表2.1:数据简介*</span>
<s>上图</s>
<br>
# 统计模型
<br>
## 多元内嵌模型
<br>
# 结论
<br>
## 总结
${\color{Black} \circledR} {\color{DarkGreen} \gamma} {\color{Red} \sigma} \; {\color{Blue} \xi} {\color{Red} \eta} {\color{Blue} g}$^[[Latex Equation](https://www.codecogs.com/latex/eqneditor.php)] 🎏^[[Emoji list](https://gist.github.com/rxaviers/7360908)]
<br>
# 附录
## 幕后花絮
## 文件信息
It's useful to record some information about how your file was created.
- File creation date: 2021-02-03
- File latest updated date: `r today('Asia/Tokyo')`
- `r R.version.string`
- R version (short form): `r getRversion()`
- [**rmarkdown** package](https://github.com/rstudio/rmarkdown) version: `r packageVersion('rmarkdown')`
- File version: 1.0.0
- Author Profile: [®γσ, Eng Lian Hu](https://github.com/scibrokes/owner)
- GitHub: [Source Code](https://github.com/englianhu/binary.com-interview-question)
- Additional session information:
```{r info, warning = FALSE, results = 'asis'}
suppressMessages(require('dplyr', quietly = TRUE))
suppressMessages(require('magrittr', quietly = TRUE))
suppressMessages(require('formattable', quietly = TRUE))
suppressMessages(require('knitr', quietly = TRUE))
suppressMessages(require('kableExtra', quietly = TRUE))
sys1 <- devtools::session_info()$platform %>%
unlist %>% data.frame(Category = names(.), session_info = .)
rownames(sys1) <- NULL
sys2 <- data.frame(Sys.info()) %>%
dplyr::mutate(Category = rownames(.)) %>% .[2:1]
names(sys2)[2] <- c('Sys.info')
rownames(sys2) <- NULL
if (nrow(sys1) == 9 & nrow(sys2) == 8) {
sys2 %<>% rbind(., data.frame(
Category = 'Current time',
Sys.info = paste(as.character(lubridate::now('Asia/Tokyo')), 'JST🗾')))
} else {
sys1 %<>% rbind(., data.frame(
Category = 'Current time',
session_info = paste(as.character(lubridate::now('Asia/Tokyo')), 'JST🗾')))
}
sys <- cbind(sys1, sys2) %>%
kbl(caption = 'Additional session information:') %>%
kable_styling(bootstrap_options = c('striped', 'hover', 'condensed', 'responsive')) %>%
row_spec(0, background = 'DimGrey', color = 'yellow') %>%
column_spec(1, background = 'CornflowerBlue', color = 'red') %>%
column_spec(2, background = 'grey', color = 'black') %>%
column_spec(3, background = 'CornflowerBlue', color = 'blue') %>%
column_spec(4, background = 'grey', color = 'white') %>%
row_spec(9, bold = T, color = 'yellow', background = '#D7261E')
rm(sys1, sys2)
sys
```
## 参考文献
01. [https://github.com/EliteQuant](https://github.com/EliteQuant)
02. [量化投资技术分析实战 - 解码股票与期货交易模型 (高清).pdf](reference/量化投资技术分析实战 - 解码股票与期货交易模型 (高清).pdf)
03. [透视高频交易 (高清).pdf](reference/透视高频交易 (高清).pdf)
04. [汉全量化交易平台](https://isite.baidu.com/site/wjz3cd7y/700443da-49f1-41d4-8308-ce8dc8289041?fid=nH0LPW0YP1ndnjRdPW0vP1DzrjIxnWc1g1D&ch=4&bfid=fbuFw0cKP1HzRpH9NFR00Pt00f7XQB3azDy4rsY0000f5AvdN6000aR0000n8POAVTAO8lSq8qQgn784zTpkQtUp8OgrtnW7gia3LtpdsUSeoeveYVTVdQHalzYz1xQAtaYznj0o1TyvYsI4mbb&bd_vid=11140361868245810028&categoryId=&field=&orderBy=&title=%E9%A6%96%E9%A1%B5)
05. [BigQuant AI 量化平台](https://bigquant.com)
06. [知乎:BigQuant 提升实盘收益的仓位管理策略](https://zhuanlan.zhihu.com/p/497393864)
07. [知乎:准备学习下量化,发现市面上有很多量化平台,聚宽,米匡,BIGQUANT等等,大家使用感受怎么样?](https://www.zhihu.com/question/419359583)
08. [知乎:量化一般用什么软件比较好,在哪里下载,还有一般量化的平台都有哪些呀?](https://www.zhihu.com/question/62413612)
09. [知乎:高频量化交易为什么这么强调低延迟?](https://www.zhihu.com/question/511736350/answer/2511420377)
10) [PYTHON中用PYTORCH机器学习神经网络分类预测银行客户流失模型](http://tecdat.cn/python%e4%b8%ad%e7%94%a8pytorch%e6%9c%ba%e5%99%a8%e5%ad%a6%e4%b9%a0%e5%88%86%e7%b1%bb%e9%a2%84%e6%b5%8b%e9%93%b6%e8%a1%8c%e5%ae%a2%e6%88%b7%e6%b5%81%e5%a4%b1%e6%a8%a1%e5%9e%8b)
11) [用R语言实现神经网络预测股票实例](http://tecdat.cn/%e7%94%a8r%e8%af%ad%e8%a8%80%e5%ae%9e%e7%8e%b0%e7%a5%9e%e7%bb%8f%e7%bd%91%e7%bb%9c%e9%a2%84%e6%b5%8b%e8%82%a1%e7%a5%a8%e5%ae%9e%e4%be%8b)
12) [python期货量化交易平台(python量化哪个平台可以回测模拟实盘还不要钱)](http://www.daimazhu.com/etagid31875b0)
<br>
---
[<img src="www/Scibrokes.png" height="14"/> 世博量化®](http://www.scibrokes.com)<br>
[**Powered by - Copyright® Intellectual Property Rights of [<img src="www/Scibrokes.png" height="14"/> Sςιβrοκεrs Trαdιηg®](http://www.scibrokes.com)**]{style="color:RoyalBlue"}