-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathhparams.py
118 lines (92 loc) · 2.9 KB
/
hparams.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import tensorflow as tf
def create_harmonic_hparams(hparams_string=None, verbose=False):
"""Create model hyperparameters. Parse nondefault from given string."""
hparams = tf.contrib.training.HParams(
type=0,
layers=3,
blocks=2,
dilation_channels=130,
residual_channels=130,
skip_channels=240,
input_channel=60,
condition_channel=364,
output_channel=240,
sample_channel=60,
initial_kernel=10,
kernel_size=2,
bias=True
)
if hparams_string:
tf.logging.info('Parsing harmonic hparams: %s', hparams_string)
hparams.parse(hparams_string)
if verbose:
tf.logging.info('Final harmonic hparams: %s', hparams.values())
return hparams
def create_aperiodic_hparams(hparams_string=None, verbose=False):
"""Create model hyperparameters. Parse nondefault from given string."""
hparams = tf.contrib.training.HParams(
type=1,
layers=3,
blocks=2,
dilation_channels=20,
residual_channels=20,
skip_channels=16,
input_channel=64,
condition_channel=364,
output_channel=16,
sample_channel=4,
initial_kernel=10,
kernel_size=2,
bias=True
)
if hparams_string:
tf.logging.info('Parsing aperiodic hparams: %s', hparams_string)
hparams.parse(hparams_string)
if verbose:
tf.logging.info('Final aperiodic hparams: %s', hparams.values())
return hparams
def create_vuv_hparams(hparams_string=None, verbose=False):
"""Create model hyperparameters. Parse nondefault from given string."""
hparams = tf.contrib.training.HParams(
type=2,
layers=3,
blocks=2,
dilation_channels=20,
residual_channels=20,
skip_channels=4,
input_channel=65,
condition_channel=364,
output_channel=1,
sample_channel=1,
initial_kernel=10,
kernel_size=2,
bias=True
)
if hparams_string:
tf.logging.info('Parsing vuv hparams: %s', hparams_string)
hparams.parse(hparams_string)
if verbose:
tf.logging.info('Final vuv hparams: %s', hparams.values())
return hparams
def create_f0_hparams(hparams_string=None, verbose=False):
"""Create model hyperparameters. Parse nondefault from given string."""
hparams = tf.contrib.training.HParams(
type=3,
layers=3,
blocks=2,
dilation_channels=130,
residual_channels=130,
skip_channels=240,
input_channel=60,
condition_channel=1126,
cgm_factor=4,
initial_kernel=10,
kernel_size=2,
bias=True
)
if hparams_string:
tf.logging.info('Parsing f0 hparams: %s', hparams_string)
hparams.parse(hparams_string)
if verbose:
tf.logging.info('f0 hparams: %s', hparams.values())
return hparams