From 538893ed2e59e545c960793e47e02a220eb6726e Mon Sep 17 00:00:00 2001 From: Manuel Santana <109173083+manuelhsantana@users.noreply.github.com> Date: Fri, 29 Dec 2023 15:57:41 -0600 Subject: [PATCH 1/7] Added XPU example for Workflow Interface This commit introduces an example of using an XPU with the Workflow Interface. The example demonstrates how to leverage the power of XPU to optimize the execution of complex workflows with OpenFL --- .../Workflow_Interface_101_MNIST_XPU.ipynb | 711 ++++++++++++++++++ 1 file changed, 711 insertions(+) create mode 100644 openfl-tutorials/experimental/Workflow_Interface_101_MNIST_XPU.ipynb diff --git a/openfl-tutorials/experimental/Workflow_Interface_101_MNIST_XPU.ipynb b/openfl-tutorials/experimental/Workflow_Interface_101_MNIST_XPU.ipynb new file mode 100644 index 0000000000..f5c3d4de72 --- /dev/null +++ b/openfl-tutorials/experimental/Workflow_Interface_101_MNIST_XPU.ipynb @@ -0,0 +1,711 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "14821d97", + "metadata": {}, + "source": [ + "# Workflow Interface 101: Quickstart (XPU version)\n", + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/intel/openfl/blob/develop/openfl-tutorials/experimental/Workflow_Interface_101_MNIST_XPU.ipynb)" + ] + }, + { + "cell_type": "markdown", + "id": "bd059520", + "metadata": {}, + "source": [ + "Welcome to the first OpenFL Experimental Workflow Interface tutorial! This notebook introduces the API to get up and running with your first horizontal federated learning workflow. This work has the following goals:\n", + "\n", + "- Simplify the federated workflow representation\n", + "- Help users better understand the steps in federated learning (weight extraction, compression, etc.)\n", + "- Designed to maintain data privacy\n", + "- Aims for syntatic consistency with the Netflix MetaFlow project. Infrastructure reuse where possible.\n", + "- Introduction for use OpenFL and Intel® Extension for PyTorch* with the latest performance optimizations for Intel hardware. Intel® Extension for PyTorch* provides easy GPU acceleration for Intel discrete GPUs through the PyTorch* xpu device.\n", + " \n", + "*Please refer to the [Installation Guide](https://intel.github.io/intel-extension-for-pytorch/xpu/2.1.10+xpu/tutorials/installation.html) for the system requirements and steps to install and use Intel® Extension for PyTorch*. For more detailed tutorials and documentations describing features, APIs and technical details, please refer to [Intel® Extension for PyTorch* Documentation](https://intel.github.io/intel-extension-for-pytorch/xpu/2.1.10+xpu/index.html)." + ] + }, + { + "cell_type": "markdown", + "id": "39c3d86a", + "metadata": {}, + "source": [ + "# What is it?" + ] + }, + { + "cell_type": "markdown", + "id": "a7989e72", + "metadata": {}, + "source": [ + "The workflow interface is a new way of composing federated learning expermients with OpenFL. It was borne through conversations with researchers and existing users who had novel use cases that didn't quite fit the standard horizontal federated learning paradigm. " + ] + }, + { + "cell_type": "markdown", + "id": "fc8e35da", + "metadata": {}, + "source": [ + "# Getting Started" + ] + }, + { + "cell_type": "markdown", + "id": "4dbb89b6", + "metadata": {}, + "source": [ + "First we start by installing the necessary dependencies for the workflow interface" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f7f98600", + "metadata": {}, + "outputs": [], + "source": [ + "!pip install git+https://github.com/intel/openfl.git\n", + "!pip install -r requirements_workflow_interface.txt" + ] + }, + { + "cell_type": "markdown", + "id": "7237eac4", + "metadata": {}, + "source": [ + "We begin with the quintessential example of a small pytorch CNN model trained on the MNIST dataset. Let's start define our dataloaders, model, optimizer, and some helper functions like we would for any other deep learning experiment" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7e85e030", + "metadata": {}, + "outputs": [], + "source": [ + "import torch.nn as nn\n", + "import torch.nn.functional as F\n", + "import torch.optim as optim\n", + "import torch\n", + "import torchvision\n", + "import numpy as np\n", + "\n", + "from torchvision.datasets import MNIST\n", + "from PIL import Image\n", + "\n", + "n_epochs = 3\n", + "batch_size_train = 64\n", + "batch_size_test = 1000\n", + "learning_rate = 0.01\n", + "momentum = 0.5\n", + "log_interval = 10\n", + "\n", + "random_seed = 1\n", + "torch.backends.cudnn.enabled = False\n", + "torch.manual_seed(random_seed)\n", + "\n", + "device = 'xpu'\n", + "\n", + "# Custom MNIST\n", + "class CustomMNIST(MNIST):\n", + " def __init__(self, *args, **kwargs):\n", + " super().__init__(*args, **kwargs)\n", + " self.device = torch.device(device)\n", + "\n", + " def __getitem__(self, index):\n", + " img, target = self.data[index], int(self.targets[index])\n", + " img = Image.fromarray(img.cpu().numpy(), mode=\"L\")\n", + " if self.transform is not None:\n", + " img = self.transform(img)\n", + " return img, target\n", + " \n", + "# Use Custom MNIST instead of MNIST\n", + "mnist_train = CustomMNIST('files/', train=True, download=True,\n", + " transform=torchvision.transforms.Compose([\n", + " torchvision.transforms.ToTensor(),\n", + " torchvision.transforms.Normalize(\n", + " (0.1307,), (0.3081,))\n", + " ]))\n", + "\n", + "mnist_test = CustomMNIST('files/', train=False, download=True,\n", + " transform=torchvision.transforms.Compose([\n", + " torchvision.transforms.ToTensor(),\n", + " torchvision.transforms.Normalize(\n", + " (0.1307,), (0.3081,))\n", + " ]))\n", + "\n", + "class Net(nn.Module):\n", + " def __init__(self):\n", + " super(Net, self).__init__()\n", + " self.conv1 = nn.Conv2d(1, 10, kernel_size=5)\n", + " self.conv2 = nn.Conv2d(10, 20, kernel_size=5)\n", + " self.conv2_drop = nn.Dropout2d()\n", + " self.fc1 = nn.Linear(320, 50)\n", + " self.fc2 = nn.Linear(50, 10)\n", + "\n", + " def forward(self, x):\n", + " x = F.relu(F.max_pool2d(self.conv1(x), kernel_size=2, stride=2)) \n", + " x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), kernel_size=2, stride=2))\n", + " x = x.reshape(-1, 320)\n", + " x = F.relu(self.fc1(x))\n", + " x = F.dropout(x, training=self.training)\n", + " x = self.fc2(x)\n", + " return F.log_softmax(x, dim=1)\n", + "\n", + "def inference(network,test_loader):\n", + " network.eval()\n", + " test_loss = 0\n", + " correct = 0\n", + " with torch.no_grad():\n", + " for data, target in test_loader:\n", + " ############# code changes ###############\n", + " data, target = data.to(device), target.to(device, dtype=torch.int64) \n", + " ############# code changes ###############\n", + " with torch.xpu.amp.autocast(enabled=True, dtype=torch.bfloat16):\n", + " output = network(data)\n", + " test_loss += F.nll_loss(output, target, size_average=False).item()\n", + " pred = output.data.max(1, keepdim=True)[1]\n", + " \n", + " correct += pred.eq(target.data.view_as(pred)).sum().cpu().numpy()\n", + " \n", + " test_loss /= len(test_loader.dataset)\n", + " print('\\nTest set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\\n'.format(\n", + " test_loss, correct, len(test_loader.dataset),\n", + " 100. * correct / len(test_loader.dataset)))\n", + " accuracy = float(correct / len(test_loader.dataset))\n", + " return accuracy" + ] + }, + { + "cell_type": "markdown", + "id": "cd268911", + "metadata": {}, + "source": [ + "Next we import the `FLSpec`, `LocalRuntime`, and placement decorators.\n", + "\n", + "- `FLSpec` – Defines the flow specification. User defined flows are subclasses of this.\n", + "- `Runtime` – Defines where the flow runs, infrastructure for task transitions (how information gets sent). The `LocalRuntime` runs the flow on a single node.\n", + "- `aggregator/collaborator` - placement decorators that define where the task will be assigned" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "precise-studio", + "metadata": {}, + "outputs": [], + "source": [ + "from copy import deepcopy\n", + "\n", + "from openfl.experimental.interface import FLSpec, Aggregator, Collaborator\n", + "from openfl.experimental.runtime import LocalRuntime\n", + "from openfl.experimental.placement import aggregator, collaborator\n", + "\n", + "def FedAvg(models, weights=None):\n", + " if weights is None:\n", + " weights = [1.0 / len(models)] * len(models)\n", + " new_model = deepcopy(models[0])\n", + " state_dicts = [model.state_dict() for model in models]\n", + " state_dict = new_model.state_dict()\n", + " for key in models[1].state_dict():\n", + " state_dict[key] = torch.from_numpy(np.average([state[key].cpu().numpy() for state in state_dicts],\n", + " axis=0, \n", + " weights=weights))\n", + " new_model.load_state_dict(state_dict)\n", + " return new_model" + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAt0AAAI6CAYAAAD7dvTIAAAgAElEQVR4nOzde3RUVZ43/C8mIVW5VlJFQqBCCk3R3BKCIB0gQRAaW2Y6QDuCtHar8D79rofhomucfp9xtThqr561enyWArbvWj1L2m7bB9RRSGba+wUJQqRBYkBAKkoCBSFQRSrXSkjFPH8Ue3NO3VKV5FTl8v2s5ZJUqs4+lfrVPr/z2/vsM6a3t7cXRERERESkmVtivQNERERERCMdk24iIiIiIo0x6SYiIiIi0hiTbiIiIiIijTHpJiIiIiLSGJNuIiIiIiKNMekmIiIiItIYk24iIiIiIo0x6SYiIiIi0hiTbiIiIiIijTHpJiIiIiLSGJNuIiIiIiKNMekmIiIiItIYk24iIiIiIo0x6SYiIiIi0hiTbiIiIiIijTHpJiIiIiLSGJNuIiIiIiKNMekmIiIiItIYk24iIiIiIo0x6SYiIiIi0hiTbiIiIiIijTHpJiIiIiLSGJNuIiIiIiKNMekmIiIiItIYk24iIiIiIo0x6SYiIiIi0hiTbiIiIiIijTHpJiIiIiLSGJNuIiIiIiKNMekmIiIiItIYk24iIiIiIo0x6SYiIiIi0hiTbiIiIiIijTHpJiIiIiLSWHysd4CIhof9tS7sr3Wh/KQTddc6AQAutyfGe0UUHoM+HovzDbBk6rByphGL8w2x3iUiGmXG9Pb29sZ6J4ho6Npf68Jj+75F9cW2WO8K0aApmpiCrYsm4uF542O9K0Q0SjDpJqKAXG4PHtn9DfadcMR6V4g0UzQxBZ/+4ywY9Bz4JSJtMekmIj/VF9uwetfXchoJ0Uhm0Mfj03+chaKJKbHeFSIawZh0E5GKy+3B7OeOMeGmUcWgj8fxx+fAkqmL9a4Q0QjF1UuISOWR3d8w4aZRR0ynIiLSCpNuIpL2nXBwDjeNWvtrXXjlyOVY7wYRjVBMuolIevr9+ljvAlFMPbbv21jvAhGNUEy6iQiAt8rNZQFptHO5Pax2E5EmmHQTEQAw4Sa64bNvm2O9C0Q0AjHpJiIAwFeX2mO9C0RDwv5aV6x3gYhGICbdRASAlW4iweX2xHoXiGgEYtJNRACYaBAJ/C4QkRaYdBMRACYaREREWmLSTURERESksfhY7wAR0XC086f5WHSbAfkmPZLGeusXzvZuXGy+jgPfurD57dqgr33mHgsmZ+rw89fORGt3Y9ImERHdxKSbiCgCeRk6HNxSBLMh0e93xuQEGJMTUDghGasKTCjZUY36pk7Vcz76n4VYOiUDFSed0drlmLRJRERqTLqJiCLw4f8shNmQiI7r32PXFw14o/oqKr/zrutcems6Hl+Si2VTMmA2JOLgliLkPl2lev2kDF3U9zkWbRIRkRrndBMRhWnt7HGwjtMDANbvOYPNb9fKhBsAKr9rxsqXT+Jf/vodAMBsSMQz91hisq9ERDS0MOkmIgrTz27PBgDYXV14/fjVoM/bceAi7K4uAMDkTFaZiYgIGNPb29sb650gotgb89hnsd6FIW/nT/OxqXQiAMDyzBd+87VD2bJoIravzvd73HbVjSm/PSJ/Lr01Hb8ruxXm9ETVvHHbVTe+qG/xuxCyfMNMlM00ouKkE19dasPGhRNgTE6As70bNocbxXlpfbZJ/nqfvzPWu0BEIwwr3UREYXqj+mZ1++CWooimjjS2Xoftqhsd178H4F3pxHbVjfOKxH3nT/NxYHMRivPSkJmUANtVt3yNdZweD87Nxtkn5gXc/rTsJDy5PA+AN6nWJ8ShVvH6YG0SEVF0sNJNRABY6Q6Xstot2K66cbqxAx/bmrDjwMWQrz/7xDxYx+lRcdKJlS+flI/nZehw6n/dgaSxt/j9DrhZ0QaA+/98Sk5vUT5ec6kds/79qNyeqMQHa5OCY6WbiAYbK91ERBHY/HYttu6tlXO2AcA6To+ymUZsX52P3ufvxFf/PBdbFk0MsRV/G4rH41pHN5zt3QET45Uvn5QV6xnjkwNu47cf1ct/RzL1hYiItMekm4goQjsOXETu01VYtLMafznaiJpL7TIhBoDCCcnYvjofhx+dHfY2t71bh9ynq2D69aGgz7nY7E30Z01ICfj7UBd3EhFRbHGdbiKifqr8rlm1ZODa2ePw99ONuGdaJozJCSjOS0P5hpn9mtKxdvY4ZKeOxR25qchJG4sfZCUFvCGPYLvq7td7ICKi6GDSTUQ0SF4/fhWvH7+KvAwdKv6fmSickIxlUzLCfr1YuSTQiiMd179Hx/Xv5S3niYhoeGHvTUQUJsdvFqD3+Tv7nK9d39SJl79oAICwk+S1s8fhvf+3UCbctqtuVJx04i9HG7F1by2S/79KOb2EiIiGH1a6iYjCpE+IAwAstWb0uUpJpJ5YloeksbfA7upCyY7qgBdCTkwPPr2EiIiGNla6iYjCVNPQBgBYNiUDa2ePC/ncDT/MARD+XGt9grc7/tLeFjDh3rJoIqeWEBENY+zBiYjCdP+fTst51Xt+MR2HH52tmmqSl6HDM/dYcPaJeSic4F3W78WD6oq4u9u7ykmyTwItHl84OQ15Gepbx+/8aT7+7e9u7fd+B2uTiIiih9NLiIjCVN/UifV7zuC5sttgNiSiOC8NxXlpAW/v3nH9e+z6osFvGkrNpTYUTkjG0ikZOPvEPJxv6sSy/78Gv/2oHrvunwpjcgLqtv1QVsgnpiciaewtcLZ342JzF6zj9BHvd7A2iYgoeph0ExFFQKxQsvOn+Vh0mwET08fCmJwgfy/uTrnl7dqA00R+/toZ5KSNxXxLOqzj9HKetlhj+4llecg36WVybbvqxvtnrmHz27XY+dN8WMdNxMLJ/qubhBKsTSIiih7eBp6IAPA28ERKvA08EQ02TvAjIiIiItIYk24iIiIiIo0x6SYiIiIi0hiTbiIiIiIijTHpJiIiIiLSGJNuIiIiIiKNMekmIiIiItIYk24iIiIiIo0x6SYiIiIi0hiTbiIiIiIijTHpJiIiIiLSGJNuIiIiIiKNMekmIiIiItIYk24iIiIiIo0x6SYiIiIi0hiTbiIiIiIijTHpJiIiIiLSGJNuIiIiIiKNMekmIiIiItIYk24iIh+lt6aj9/k7cfaJebHelX4T76H01vRY7woREYFJNxGRn8eX5MJ21Q3rOD22LJoY690hIqIRID7WO0BENNQsnJyG3V9eAZCJdbdnYceBi6rfn31iHqzj9ACAipNOlM00YtHOalR+14wtiyZi++p8AICzvRs2hxsAMP+F4yjfMBNZqQkozksDAGzdW4sdBy6qtuds74bp14dkW+UbZqJsphEAUFXfAqtJj91fXsHmt2sBAL3P36nat4qTTjz36QUc2FwEADiwuQgvVl7E5rdrVfsGQD4OAI7fLIDN4UZxXprfPhAR0cCx0k1EpLDzp96kdPPbtXj/zDWZIAuHH52NzKR4jHnsM4x57DMsnHzz96W3pmP76ny8WHkRYx77DLu/vOL3+uK8NGzdW4sxj30mE25nR7fc3ufnWuD4zQK5LyKhH/PYZwAAY3KC3JbjNwtQcdIpXytOAABg0c5q+X9lwi3a3rq3FptKJ6oq+VaTHmMe+4wJNxGRBph0ExEp3D01E5+fawEAWQUWiTjgTZqf+aBe/qz8t5iWIl63+e1a2K66Vdt3tnfLynnpremwjtNj/gvH5e9XvnwSxuQEbFk0EXdPzUTFSScqv2sGANXzAMD060NY+fJJ+fPHtqag72vd7Vmoqm+Rbe84cBFV9S3YVHIz6Rbvm4iIBh+nlxAR3SCS4A17vpGPVdW34O6pmfL3AHDc3iZ/r/x3VmoCnB3dqm36/nytwyP/vaZoHAD/KSKAt+qcmRSP802d6u21d/s9Vzk9JRhjUgJON3aoHjt6vhXrbs+SP/u2RUREg4dJNxHRDY8vyQUAOR9aacuiiaoEe7CEmj+tTIgDEcm27aobYx77zG/ONhERDR1MuomIblg4OU11caHg+M0C1QWVs80pcsrHbHOKfN6V1m5My05SvdaY5F/9FmwON4zJCSi9NV1uT+lahweTMnTq7d2Y0y2q8uICzr44O7qRlZqgemzupFRV5Z2IiLTDOd1ERPDO2zYmJ/gl3IB3rrO4ILKqvgXblufJ3yn//dynF2Adp5dzwHf+ND/ktI8dBy7CdtWNvetnyMe2LJqI3ufvxJZFE/H+mWsom2mU01oOPzrbbxvKpD9UlVtc1CkunNyyaCKK89Lw4sGLQV9DRESDh5VuIiJ4L6Csqg98IeFzn15A2UwjyjfMxPwXjuPsE/PkPGzliiGV3zVj695abF+dj02lE+Fs7w66TWHKb4+otgdAVb2elKGT012q6lvknO7K75rxYuVFbF+dL5PtRTurcWBzEdYUjZMXcSqXDASger5YspCIiLQ3pre3tzfWO0FEsZfxxOdwuTnVIFJiHrVY0s/X2Sfm4XRjh2qVkYHoff5OJstREOjiViKigeD0EiKiCPQ+fyfKN8yUP6+7PUsuC1i+YaYqWRPzrkMt5RfK2SfmqW5FL6atMOEmIhp+WOkmIgDA7OeOofri4K/OMdL4rhBiu+rGlN8ekT/7Lt830Kq0b8U1WEWdBk/RxBQcf3xOrHeDiEYYJt1EBAB4bN+3eOEze6x3gyjmHp43Hn9c94NY7wYRjTCcXkJEAICVNy4GJBrt+F0gIi0w6SYiAMDifAMsmbq+n0g0glkydVicb4j1bhDRCMSkm4ikp+7O6/tJRCPYQ3dkw6DnarpENPiYdBOR9PC88azy0ai1ON+AR+80x3o3iGiEYtJNRCp7189gpY9GHYM+Hs+vuo2xT0SaYdJNRCoGfTyOPz6HyQeNGgZ9PPaun4GiiSmx3hUiGsG4ZCARBeRye7Dk919x7W4a0RbnG/DHdT/gRcREpDkm3UQU0guf2bH9wEXUXeuM9a4QDRqDPh5P3Z2Hh+eN56gOEUUFk24iCsu+Ew589m0z9te6WP0OR1cb0HJZ/d/VWu/js/8BmP5j9XOP/ydgrwYazwAJeiBjEjDuNiA1G0gbD6Td+L+eF7r2h0EfD0umDpZMHR66IxuL8w1Mtokoqph0ExH1g8vlQl1dnfyvvr4e1dXV8nGXyxX0tU899RT+9V//Ffv370d5eTleeeWVkM9XSklJQV5enuo/i8Ui/52TkzNYb5GIiAYRk24ioiCCJdYiqQ6VKBsMBlgsFvlfXl4eioqKEBcXh7/+9a94//33UV1dLZ9bVFSErVu3or29HXv37sX777+PtrabIwppaWno6elBe3t7yH3W6XR+ibgyOTebuSQeEVEsMOkmolFrINVqg8GgSqxFUltUVASLxQKDQT0NJFBV22AwYOvWrVi1ahWKior82njrrbfwxhtv4I033pCPxcXFYfny5SgqKkJOTg7q6+tRX18v9//q1ash33NCQkLQKrn4b8yYMZH8GYmIKAxMuoloxBLV6FDV6lCCVavF476JdaD2X3jhBZSXlwesai9evLjPbQBAc3OzTL4/+ugj+bjJZMKaNWuwZs0a3HnnnQCAtrY2v0Rc+V9DQ0PItsaMGRMwGVf+HB/PudBERJFi0k1Ew9pAq9UDSaqD2b9/P/70pz9h3759sn2LxYKHHnooaFU7XOfOncMbb7yBN998E8eOHZOPT5kyRSbgBQUFQV/f2dnpl4wrf7bb7X3uQ25ubsgpLImJif1+f0REIxWTbiIa0gaSVAOBE2tRYRb/DdZ+BqtqP/XUUzKZH0xffvmlrICfO3dOPl5cXIz77rsPa9asiXgOd3d3d9BKufi5LxMmTAg5hSU5OTni90pENNwx6SaimNPigsWBVqvD3e/q6mps374d+/fv96tqP/zww7BYLJq1r/TRRx/JBLy5uVk+fs8998gKeFJS0oDb+f777/2mrPgm5x6PJ+Q2srKyQk5hSUtLG/B+EhENNUy6iUhz0bxgMRpCVbWff/75mO2X8Oabb+KNN97Af/7nf8rHEhISZPJdVlamafsXLlwIOJ9cPNbV1RXy9UajMWSlPDMzU9P9JyLSApNuIhqwWF+wGA1DqaodrqamJln9/uSTT+TjWVlZMgEvLS2N+n5dunQp5MWefS2LmJ6eHnQ+eV5eHsaNGxeld0JEFD4m3UQUlqF4wWI01NXV4ZVXXsGf/vQn1NXVARhaVe1wffvttzIBF9V5AJg6dapMwGfMmBHDPbzpypUrIS/2bGlpCfl65Q2EAiXnvIEQEcUCk24iAjB4FywWFRUhLy8PBoNBkwsWo0FUtR977DHVe1+8eDFWrlyJhx9+eFi9H19Hjx6VCbjywsgFCxbIBHwoJ6ZOpzPkxZ5NTU0hX6/T6UIuicgbCBGRFph0E40iw/WCxWjpq6o9kKX+hqoPPvhAJuCtra3y8b/7u7+TCbhOp4vhHkbO5XKFvNgzkhsIBUvOiYgixaSbaAQZaRcsRsNIr2qH6/vvv5cXYL799tvy8cTERJl8//3f/30M93DwiBsIBbvY8/LlyyFff8stt/R5V0/eQIiIfDHpJhpGRsMFi9FSXV2NP/3pT363ZV+8eLFcV3u0cjqdsvq9f/9++XhOTg7WrFmD++67DwsXLozhHmrL7XaHXBIx3BsIhbrYkzcQIhp9mHQTDTGj9YLFaFBWtZUXE462qnYkbDabTMBramrk49OnT5cV8GnTpsVwD6Ovu7s75JKIkd5AKFByzhsIEY08TLqJomwwLlgUUz6UU0BEYk3+9u/fj/Lycr+q9qpVq7B169ZRXdWOxJEjR2QCfuHCBfl4SUmJTMCzs7NjuIdDg/IGQsGS856enpDbyM7ODlol5w2EiIYnJt1EGgiUWIu1nXnBYnS4XC7s378fTz/9NKvaGnjvvfdkAq5cV/snP/mJTMDHjh0bwz0c2s6fPx9yCku4NxAKNoUlIyMjSu+EiMLFpJuoHwbjgkVRrU5PT5f/ZlI9cKxqR5fH45HJd3l5uXxcr9fL5HvFihUx3MPhSdxAKNh65R0dHSFfbzAYQl7syRsIEUUfk26iAHjB4vDicrmwb98+bN++nVXtGLp69apMwA8cOCAfnzhxokzAi4uLY7iHI0djY2PISnm4NxAKtiTi+PHjo/ROiEYPJt00avGCxeEvWFX74YcfxkMPPcSqdgx98803MgE/efKkfHzmzJkyAf/BD34Qwz0c2ZxOZ8iLPfu6gZBerw9ZKecNhIgix6SbRqyBXrDom1TzgsWhgVXt4aeqqkom4BcvXpSPL1q0SCbgnO4QXcobCAVKzsO5gVCoJRF5AyEif0y6aVhTJtbV1dVobm7mBYsjVLCq9tatW7Fq1SpWtYeJd955RybgbrdbPr5q1SqZgMfFxcVwDwnw3kAo2Hzy+vr6iG4gFCw55+dMow2TbhrSOAVkdHO5XPK27KxqjyzXr1+Xyfd//dd/yceTk5Nl8v3jH/84hntIoShvIBQoOVeOaAQzadKkkFNYeAMhGmmYdFNMaXXBokiqmZANT6xqjy6NjY0yAT948KB8PDc3Vybg8+bNi+EeUqSuX78e8uZB4d5AKNQUlqSkpCi8E6LBw6SbNMdqNYXD5XLhhRdeQHl5Oavao9jp06dlAn7q1Cn5+KxZs3DfffdhzZo1sFqtMdxDGgziBkKhLvaM5AZCgZJz3kCIhhom3TRgg7FmNS9YHL1Y1aZgPv/8c7zxxht488030dDQIB9fvHixrIAbjcYY7iFpSXkDoUDJeTg3EApVKecNhCjamHRTWEQCLaZ9KC9YrKurC/laVqvJV6Cqtrhh0EMPPYRVq1YxLkjlv//7v2UFXJls/fSnP5UJ+JgxY2K4hxRtFy9eDDmFJZIbCAVKzrmiDg02Jt0EgFNAKDpY1aaB6uzslMn3X//6V/l4amqqTL6XL18ewz2koULcQCjYFJbW1taQr09NTQ25JCJvIESRYtI9yuzfv58XLFJUhapqb926FYsXL2b8UL80NDTIBPzQoUPy8by8PKxZswa/+93vYrh3NNQ5HI6QF3qGewMh3yr5z372syi9AxpumHSPIi6XK+gcNlarSSvKuLNYLHL6CKvaNJi+/vprmYCfOXMGAPDmm2/iH/7hH2K8ZzRciRsIBVuv3OFwBHzdtm3b8PTTT0d5b2k4GLVJt6vLg1fONKC8zgFXlwd1rZ1wdXlivVvae/VG5SczGzBmA+Z8wDge0KfEdr8GmSVVhyJTKmYZk/HorFwYEuNjvUsARnHcffoWYL7NG28jLNaUGHdDRO0J4MxR4O8fifWeRAXjLkY6O4BrjTf/c172/n/FL4Cc0bEIwFCNvaFq1CXdri4Pnj5ah1fONIysLz+F9OisXDy/MD9m7TPuRifGHcUC445iJdaxN9SNqqS72tGG1e+eQF1rZ6x3hWLAkqrD3nsKUGSKbqWVcTe6Me4oFhh3FCuxir3hYNQk3dWONiwpP86z7lHOkBiPT1fOjlpnwLgjgHFHscG4o1iJduwNF7fEegeiwdXlwSOfnGZHQHB1eaJ2UGDckcC4o1hg3FGsRDP2hpNRkXS/8NUFVDvaYr0bNES4ujx47PNazdth3JES445igXFHsRKt2BtORnzS7eryYPsJu+btrM3PQu/GJejduASlOVxeDwDKVxSgd+MSbCk0R/W14XjlTIOmcw6jFXcA0P7LRejduAQ7S61RaW+o21JoRu/GJShfURDV14ZjJMXdV2vvQO/GJTh875yotDcc9G5cgrMPFEf9tX0ZSXH36rLp6N24BI71JVFpbzg4+0Axejcuifprw6F17A03Iz7pjtbV04/OyoWzsxsA8PjsXM3bo4Hb991VzbYdrbjbWWpFUnwcnJ3duHuSUfP2aOBGQtyV5hhQaEyBs7MbhcZk5KXqNG+TBmYkxB0A3DMpE87Obhh1CZoVZWhwaRl7w82IT7o/u9QclXYKjcmwNbthb+vCwvHpUWmTBkbL2IhW3C2aYICzsxvVjjZY0/UcZRkGRkLc/XLGBADAu+evISk+Do8XsdAw1I2EuFubnwWjLgHvnr8GAFhnzY5KuzQw0YqP4WDEJ93VjlbN2xDVxg8vXMP+Sy4YdQl4Zt5kzdulgdl/KfQtfgciGnEnqo3Vjjb8x6lLAICn7hgdN2QYzoZ73AHeaqO9rQs//+gUOjw9WDV5XFTapf4bCXH36Czvyd2vv/gONc42FGencZRlGNAy9oabEX/rINd17Ye8Fk0woMPTg21HziEvVYcHp2Rj5WQTth05F/D5ry6bjnsmZcKoS4Czsxvvnr+GtLFxKLOYMOalT+XzSnMMeHGRFYVG75I7Nc42bDpgw4HVs1FR58DKd04E3afyFQUos5hgefUwKlYUqLZR9s4JFGen4dkf3gpruh4dnh4cvtyCDZ+eQb1i7lVeqg57ls9AoTEZSfFx6PD0oMbZjvs/+Fr1PAB4Zt5kPDI1B+aURLm9YJTPBQB7Wxf+vfo8dtREZ06goOVwaDTiTlQb/+PUJbxeewXPLcjH/PFpQZ+/pdCMfy6apPqMDl1uxpNzLdh60Kb6+4cbo4Ha2F5ixdaDNpRZTJg/Pg1J8XGwt3Xh8UO1qGpswZ7lM1Cc7d1PEdOVDS7VdspXFGDh+HQYdQnyeb89Vo/Xa6+onrc2PwtPzMlTxfeBS+ptBXuueF8//+hU0PejheEed6La+JezjQCAw5dbsNScgbX5WX6fDxBZPxZJjPrq3bgEFXUOnG/txDprtozd3bZGbK60oXxFAZaZM2Q8BupzAvVNfzzT4NeX+/aNYnuBBOpHA/W3WhvucQd4R5RrnG2ob+1E+TkHCo0p+M0Pbw34Hc5L1eHlJVNVfdC/V5/HpgLvlJQpr1XJ5w7kWCvm4T/5xXd4bkG+KnaXVVTjmXmTsXHmRFVf6ru/gfqmzy83B2xX2TeK7QUTqB8N1N9qjSuY3DTyk26NP2xRbaxq9CaZ9a2dqHG2odCYgtIcg19wf1RWhKXmDDg7u1FR50CWfiwenJKNDk+P33bf+0khkuLjUNXYgivu61g4Ph3v/aQwov07uPp2uHu+R0WdA5ZUHQqNKfiwrAgTk8eixtmO003tuN2UiqXmDOwotcoveaD2s/RjUZydhlPr5mH67iPygPHMvMl4cq4FHZ4efGz3ntGKjs7XzlIrNhWY5XPbPT1YOD4d20usMOkSgp6oDDfR6GTE3EaR6Oy/5MKDU7Kxs9SKzZU21XODfUaBkvRwYzSUfy6aBH38LfjI3oTk+DgsNWfg94umwO353i8eX75rquoAeOEXC2BOSYSt2Y3PLzcjOT4O88enYc/yGchOGisTpdIcA3bdNdXvOyIOqkpr87P8njstIxkPTslGTtJYLKuoDvu9DWXRun4FAP7wtXd05T9OXcJScwYenZXrl3RH0o9FEqPB3G5KxTJzBg5fbkG7pwfLzBnYVGDGogkGTExOVMXjvxXfivJzDtmP+cY9ACwcn44n51owy5SiSoAOrr5dxujppnZMy0jG9hL/C5nzUnV+z83Sj8VScwYOrr4duX8+FPZ7G8qief2KOKneduQc/qkoF/dMygz4/GCfUYenBxfbr8vnDcaxNjMxHrvumooaZzu+dLTKY+pXa+9AfrpeFY8PTsnG3660yH7MN+7bPT2YlpGMMosJZx8oVvWNwfrmQA7fOwfF2WnyuaIffe8nhfjxf9VEPfEmrxGfdGtNVBtf+OqCfEycgf9yxgRVYJfmGLDUnAFbs1v1RRLVQaXfLbgNSfFxftWdsw8Uw5quD3v/rnV1Y9brf5M/X/jFAljT9aqz97xUHU6tm4dpGcl+7b94wq5K4ETSvGf5DMx/6xgAYOPMiejw9KgScbFNZeKdl6rD+mk5cHZ2Y86bR1XPPXbfXPxTUe6ISbq15lttBLxDrg9OycaiCf7zukN9RkqRxGgo+vhbVJ+xOFj4btc3nneWWmFOSURVY4uML/F+d901FdvmWuT3IZLvyLM/vBVJ8XG4/4OvVYnhV2vvCFmlJX+i2ij6NjHKUmhM9ntuJAK2C/kAACAASURBVJ9RuDEaijklUfUZi4QmP12v2q4YCVw52YQdNXYZ9/a2LpTs/VLV/sHVt6PMYpJFFBGjvhVQsU2lHTee+5ezjarq5qvLpuPBKdl4ddn0qI+0DFdiRFl5PAo2yhLJZzQYx1rRF4vPMi9Vh7qfz0ehMUW1XdGPLjVnyMdE3K//5IzqPYikWRRRIumbtxSaUZydhhpnm+r4vzY/C3uWz8CLi6yqxyl6Rvycbq35VhsB7xl4h6fH7wxcJOh7bI2qx3fU2FHjVK9vWmhMhr2ty2/488kvvoto/14+3aD62d3zPQBgi6Ljqm/tVJ35A0BxdhrsbV1+FdPNlTbY27rk9ACR/B2+3KIaKq1v7fSbYvJ4US6S4uPw7vlrfs/dbWtEUnwc58KHybfaCPiPsgihPqO3v3OothtJjIby+eVmVVvtN6rkvts93dSu+lmswHL/B1+rHn+99goOX25RrVgQ7Dvi20ZpjgHWdD1qnG1+ifWmA974/h/TJ4T93kYz32qjsP+SC0nxcX7LVobbj0USo6HYmt2qz9hxY0Up3+2KSrogVpz645kGv/b/eKZB9RxxUrvFp2/0/RnwVso7PD1+ifXPPzoFZ2c3Fgc4QSZ/YkS5xqnuL8S1LKI/FIJ9RivfOeE3YjdYx1rlZyxiyHe7vm1sKTTLuPftm0QfKPrEUH2zva1L9Zi4wPS3x+pVj79eewVVjS0oNKZwLnyMsNI9AOJAASDgOpdJ8XHYUmiWX7T8G2fNvokwANS1dsr5XKU5BiTFx+Gwy39e9Ou1V7Bn+YwB73s4cwm/cXUEfNze3iXnPGYnjQXgnzwBwKHLzVhqzpA/T7rxJc9P1/utg5yl925nFm8ZGxZRVTywenbA3z8+O1dWIktyvKvpHLrsfwX53660qIYnw43R/hJJUCj2tq6A8Xm6qV0VT0nxcahp94+7l0834Mm5Ny8onT3Ou8/6+Lig629P4gEoLCKZ2VRgDjiNx5sgeBOdSPqxSGK0P9rDnBoVKO4/vNCkiif9jSU6fWO0vrXTL/kR826DxZ3oRyk0kXAWZ6cFPNaKZSvFZzIxOTFoP+I7tUTLY60ocvUlUNzXt3bKZYgBIG2sd9T4wwv+FyV+4+pQxZLIS342JRs/8/nuiN+JUR6KLibdAyDOrsX8PyUxb3CdNXvUBnawBEtUyal/RLVRzD/0tcycMaqXrQx2QmlN10c0NYvURLVRzJH1dbspVS5bOVrniwZKsoy6BL8pDRQZMaL8eYDkVFwb8nhRrt/I7GgR7KSScTf0MOkeADEsFezKZsf6ErmkUX1rp0yQNkzL8Zu7bFFU2sQB6weGJL9trs3PGqzd71Og9gHAnHzzjLqxw/uelPPBBWVVEgBarns7hr5WIaDQRLUx0CoywM25gM/Mm4xtR87B1uwGACwIkIjfkaU+AQo3RrVkTklUVa0E3xjr8PSoYlHwvWGGiNG+ViGg0JTD24GuvRDXezx1hwXLKqoj6sciiVEtBYr7H+Wq+zG3pwfGdH3AGLWm6+V7ASAv2lPOwaXIiBHlj+1NAb+/pTkGHFg9G6smj5NJ97UuD6xBPqOJyWNltXuoHGsDxX1eqg5GXQKu3bhIVRw/f5Sb4XdS69s3um8k4aFWmqLY4JzufhLVxv1BlicDIJfy+c0PbwUAPHfce7Hl/T4L+q/Nz/Ibtq9qbIE5JdEvgXhiTt6A9z0con3fOZrKC90A7xCcs7Mb88enqTqpvFSdX7VVzD8ONCx9+N45mt72faS4ObexLWhFV1zUu3Kyt8qxo8YuPyPlPL68VJ3fdQeRxKgW3j/vBAC/Yd21+VmYP957Jb44YatxtgeM0Q3TclQ/ixhdZs7wm8e4s9Sq6W3fR5J7JmXKpVED2VxpQ4enR7XaSLj9WCQxqgUR949MzfFr/5GpOarniPnsvjH66rLpftutcbbDmq73e/9r87PQ/stFmt32fSQRI8pi/ravygYXapxtMKckymOQ6Ed2+PQNry6b7reqViyPtcq4903yRXyJ9yKOn74xujY/y28ET8Sob7+Wl6rDhV8sQPsvF3FOd4yw0t1PotqovJDN1x++voQHp2TLg0Zlgwsf25uw1JwBx/oSfH65GVn6sSg0JqPD06PqDH516Fu895NCbC+xYp01G1fc13G7KRWZuuh8ZKL9TQVmzM1KUy0Z2OHpwa8OfSuf+8zROmwvsWLXXVPlBWmBlvmqbHDhxRN2bCoww7G+BNWONrk8kjVdH/BiFlIT1cZga1ED3iTz94umqJatfOnkRTw514JT6+bJC1yLTCnQx6vPuyOJUS1srrRh1eRxKM5Ow9kHinG6qV0udZUUH4f/XX1zlaD7P/gap9bNU8XowvHpfu8JAP7xwFnsumsqTq2bhxpnu188i4SKAhPVRnGyHUyNs1214kIk/Vi4MaoFZdwfu2+unMYg1jj+2N4kq4ubK224e5JRFaOiD/O9SO/+D77GwdW3Y3uJFRum5aCutVMVz74XxZG/QmOy32IFvg5ccqHQmCKXrRT9iFh273RTOyypOnnNilKsj7Ui7sXx0/eYKKr3lQ0uVNQ5UGYxyRhV9mHKvnlzpQ1zs9JQZjHhwi8W4MsbNy9SxnM014inm1jp7gdRbbS3dYWcu1jZ4IK9rUu14sKyimo5B7zMYoI1XY9dpxv8Vg+pbHBh/Sdn5F23yiwmXOvqViUdWqpscGH67iM3rnT2rhlaaExGVWMLpu8+onrfO2rsuP+Dr1Hb7MZScwaWmjNQ42wPuK+bK2149mgdrnV5sNScgTKLCZmJ8aioc6Bk75dReW/DmTiBe66POKh2eFcaESsubDtyzvt37/T+3eePT0O1ow0f2f0vygk3RrWS++dDqKhzIDMxHmUWE5aaM1Db7Mb9H3ytqrLWt3b6xei1Lg/Wf3LGb5uv117B+k/OoLbZ7RfPXLO2b6La+OGF4DfiUP5erLgQST8WSYxqYVlFNZ49Wge353uUWUwos5jg9nyPZ4/W+a3jPuW1KlWMZibG49mjdX7fkfrWTpTs/RJVjS2YmJyoiuetB21cIrUPYkRZ9GfBiP5QXFAJQPF3H3vjM0oI2DfE+li77cg51fFTeUz0Xcd95TsnVDFaaExGRZ0j4Hdk/lvHVP24iOcXT9hHzH0JhqMxvb29vbHeCS0NlzlNYk3QvvZXrMnJ+amDI9CV8INhuMSdWLc2nHn24cYo9W20x10k/VgkMUqhjfa4A7x/A9+1rgPhsXZwaRV7ww0r3VG0pdCM9l8u8luLWszJUq6DfPaB4oDz/cR81f9zlsOSFL5A85bFvPsOT4/q5g3hxihRXyLpx8KNUaK+lK8ogGN9iep+BcDNefdfKKZJ8VhL0cQ53VFUfs6Bfyu+FU/OteBHuZm44r4u5/d1eHpUC9mfbmpHmcUk59UCkPO8qhr9F9InCsXW7FbNbwRuzu978cTNZCaSGCXqSyT9WLgxStSXj+1NKLOY8N5PCuUt2MX8Z3tbF36tuPENj7UUTZxeEmWlOQb8bsFtKDQmywsfapxt+O2xer8v985SK1ZNHicXvRfrlHKoa/CMluHWvFQddpRaZRIDeG9C88czDX7zSiOJUeqf0RJ3QPj9WCQxSv0zmuJuS6EZG6blyFWXOjw9qHG2B1xqlcda7XF6iReTbhrVRtNBiIYOxh3FAuOOYoVJtxfndBMRERERaYxJNxERERGRxph0ExERERFpjEk3EREREZHGmHQPcVsKzX7r1/ZuXBJwXVFf5SsK0Ltxibwb5mAIt20a/nw/67MPFId1MUygmB2ocNum4c/3s46kHxvs/kmLPpSGJt/POpJ+bLD7Jy36UBoamHRTQHmpOpSvKJA3EyCKlp2lVhy+d06sd4NGmS2FZhYUKOpKcww4fO8cntiNErw5zjAUjeWZVk42ocxiQkWdI+pt09DU122TB8umAjNsze6YtE1DT7TWSt5UYIY1XR+Ttmno2VFjj8pdUB+fnYvi7DTstt2882W02qboY6WbiIiIiEhjrHQPop2lVmwqMOMvZxvx849OBfzdiyfs2Fxpk3dfu92UqroLlq3ZHfCOWUq9G5fA1uxWVf+emTcZj0zNgTklER2eHhy+3BLwteG0W76iAGUWEwCgzGJC78Yl2HrQhh019oBtr83PwhNz8uSdvwLdzWtLoRnbS6zYetCGpeYMLDNnICk+Ds7Obrx7/prf34vCV5pjwIHVs1HjbMOs1/8W8HdVjS2Y/9YxAN5YvHuSUVb1Ojw9qG1293nHybMPFMOarleNdvh+9jXONhy45Ar4+r7aFTECANZ0PXo3LkFFnQMr3zkRsO28VB32LJ8h75wZ7I5zYsrAk198h2d/eKtsv8bZhk0HbKhsCLy/1DfH+hLo429B8h8OBPwdAJh2HQRw8w6B+el6eadTW7Mbe2yNIe84Kfoj0QcB/p+9va0L/159PuDrw2lXOR9X2ccFalvsk/LOmYHu2Cpea3n1MPYsn4Hi7DQAkPvKSmb/Hb53Doqz03D/B1/79Vnid4v2Hkdlg0veYdearlfd6fRLR2vIkQzRH4k+SFB+9uL4FUg47Yp+DQC2l1ixvcSKMS99GrRt5XFebM/3jq081g5trHQPos2VNnR4erB4gsHvd4smGNDh6cHmShsA4MOyIpRZTLjW1Y2KOoecxlGcnYY9y2dE1O4z8ybjybkWZOri8bG9CYcvt2D++DQsNWf4PTecdj+2N6Gq0Zu025rdqKhz4PjVtqBt71k+A/npenxsb0JFnQPXujwos5gCzo/856JJWDg+HYcvt+BjexP08bfgwSnZ2Flqjeg9002VDS7UONtQaExBXqpO9btfzpgAAHjhqwsAvAeMTQVm6ONukZ//xfbrKDSm4PeLpkTUbmmOAbvumopCYwqqGltQUefAxOREbCrwn5sYTrvHr7bJeHR2euPzY3tT0LZPrZuH4uw01DjbUVHnQI2zHcXZaTi1bp7f3yEzMR677poKt6cHFXUO2JrdKDSmYO89MyN6z6T27vlrSIqPwzPzJqseX5ufBaMuQSYkIhGYmJyIw5e9sVLV2AJruh5PzrWgNMe/zwzl4OrbUZydhovt11FR54C753t5wqYUbrsVdQ44O7vlv98/7wza9oVfLLjRh3pkjOan67Fn+YyA83IPrr4d5uRE2bY5JRHbS6wRv2e6SfRn/2P6BL/fFRqTUeNsQ2WDC3mpOrz3k0IUGpPlsexjexMydfEos5giPu58dOP4CUD2Iw9OyfablhRuu++fd8qpdKIPDdX2k3Mt0Mff7EP18bfgybmWgBdc8lg7NLHSPcjEgb80xyAraKU5BpmYiJ8zE+NV1UfBsb5EVkTCtXHmRHR4ejB99xFZ4ctL1eHUunmyshNJu6ICU5ydhtNN7SGrAaLt9Z+cUVUcRLVhZ6lVnmgAgD7+Fsx586jcz7X5WdizfAYWBThRofAduORCoTEFjxflqv7e90zKhLOzW3420zKS4ezsRu6fD6leLz6vLYXmsCtwv1twG5Li4/yqgMrqjRBuu5UNLvRuXIJrXZ6QcSfaFiNHghhR2rN8hirGjboEvxGor9begUJjCtbmZ4Ws8FNwf/j6Eh6cko0f5Waqqm2PzsqVvwcgCwCr3z2pGlkQn9fjs3PDHnHYWWqFOSUxYAVSJERCuO2K0RSjLiFk3Im2ffvQtflZ2HXXVGyba/H7/lzr6laNQL26bDoenJKNX86YwFGWfnq99gp+v2gKikwpqsd3llqRFB8nR9s2TMsBAOw63aDqJ8QI4N2TjABsCEdpjgFLzRl+I73KEToh3HY3V9pQvkIHa7oeu22NQfte0ba9rQsle79UHecPrr4dZRaTKucAeKwdqljpHmTiDFxUGJX/Fr+rbHDBtOugX+ILANe6PBG1JypKhy+3qIbU61s7/aaYDGa7gLezEW37Ji33f/A1ANzoXG76/HKzaj/F6/SKkwOKnBhlUXaovtVGwHtBohjuV7rivh5xm4XGZNjbuvwOFHsUFwRp0S7gPSG0t3WpDmiA9+9gb+sKeOLqO6xadyMOs5PG9msfSDnKkqx6XFltBLwXJI556VO/JNP3gtlwiBjf4vPZ+/482O0CN/sz0b8Jr9deweHLLTDqEvyq3S+fblD9/Lcr3n45bSz7vIF49/w1GHUJWJufJR/zHVHeduQckv9wwK+f6M/JjjiO+/ZvO2rssLd1qR4bzHYB78WWAPDHMw1+x/k/nmlQPUfgsXZoYqV7kIkz8HsmZcrHFk8wqKqNSlsKvVfMT0rVYVpGsl+FsC8iYTjd1O73u0OXmwNOMRmMdn3b8VXf2imHayk6fEdZxNCrqDYqrc3PwozMZMwypcCSqkN+Pz7/pPg41LT7x93Lpxvw5FxLwNcMRrvCN66OgI/b27vknEfSnhhlEaNaz8ybrKo2KpXmGDB7XAqWmjOQpR/br35Hf2N+qu91L/WtnX7Jz2C2K9jbugJec3O6qT1of0uDT4yyPDorF6/XXkFeqk41oqyUl6rDyskm3JGVhpyksfiBISni9sRJ0ocX/Ke8fePqCNjnDEa7Sr4ncGJ/gvW3NPQw6dbAu+ev4cEp2Vibn4VL7ddhTknEX86qz44/KitSddDOzm5cbO+Cs7NbXnQxUI4ASW802qXYeOGrC9izfIYcti4ypaiqjYB3+HX9tBw57ajD04OL7ddxsf36gBIRpUAJSTTapdjYXGnD+mk5sgL9o9xMVbUR8J5s/X7RFFUfY2t242J716D2O+6e71U/R6tdij7fUZbHi7yVXjGiDHiT3g/LilR9jL2ta9BPzNs9Paqfo9UuDT9MujUgzsCVF3koq407S61Yas5AVWMLXvjqgqoCLuYVhquxwzs8Py0j2e93vlWXwWxXacH4dL/H8lJ1MOoS+jVthfpHjLIsnmDAM/Mmw6hLUK39WppjwKYCM+xtXfiX6u/8VmOINPnt8PTAnOx/APEdXh/sdoVgVaNA+0TaUo6yFGen+VUbf79oCvTxt+DZo3V4+fTNIfJA82H74vb0wJiuR16qzu8Ez5quV00dGcx2BXNKYsC2A/XBpC0xyvLMvMlYNXmc34jynuUzYE3X4y9nG/GHry+pChCR3kGy5bo3sf5RbobfNBHfz34w21XaMC3Hb6WfH+VydGU44ZxuDYgz8CJTSsBq46QbKyt8eOGaqoNYm58VcQLyeu0VODu7MX98mmpuW16qDgt9kuHBbBfwzmUL1DYAuRJKqFUAaPC9e/4azCmJuN+a7VdtnD3Oe9HRN64OVeIbKFbCUeNshzkl0e9qeHERkVbtApCrQPi2rbzQjaJHVBdfvmuq6mfBqEvAtU4Pth05p0pWfWMlHGLaiu8qT4HunjuY7QI3+zPfttfmZ2H++DQ4O7u5FGAUiWtZ7rdmw5yS6Ld8nygk/fqL71TH4P7caVkUzh6ZmqNaHSnQ8XMw2wWA545fCNh2XqoOj0zNUT2HhjZWujVy4JJLLp222+fCi68cbSizmPBPRblYMD4d7Z4eWG7MR+vw9KhWHAnHM0frsL3Eil13TZXV9fnj/S8ki6Td8nMObC/xruddvqIAzx2/EPAikJdOXsSTcy2y7XZPj5wjHuhCN9KWGGWxpuv9Es/jV9vQ4enBUnMGDt87B1fc15GlH+t3EVy47v/ga5xaNw+bCsyYm5WGK+7rWDg+Hfp49bl8pO3a27owMXksylcU4GN7U8Ak5leHvsV7PylUtZ2lH4vi7DR0eHrwq0Pf9us9Uf+IURZruj7g9Sv2Nu+w+tkHinG6qR3J8XEoMqX4xUo4NlfacPckI4qz0+T2RJ/T4TPMH0m751s7YU3X46OyIpxuag/Yd22utGHV5HGqtpPj4zB/fBqS4uPwv6uZ+ESbGGUB/K9fEZ/psfvm4vMb1x6Je1T4xkpfKhtcqKhzoMxikttT9jnK42ck7Yrj8oZpOVhqzgi4ek5lgwsf25uw1Jyh2qZYL/xjexNXwhkmWOnWiDgD9602At4rm188YYfb8z2WmjNQZjFBHx+HZ4/W4e3vvOt0+q57G8qOGjvu/+Br1Da7sdScgaXmDNQ42/0OAJG0W9/aiY/tTTCnJKLMYpLVSl/bjpxTtV1mMSEzMR4VdQ6/5eFIe2KUBfCvNlY2uLD+kzNydY8yiwnm5ER8ZG/C+k/OAIDfkmuh1Ld2YvruI6hqbEGhMVmuXSy21d929527Kh8LdmFaZYPLr+1CYzKqGlswffcRHoBiQFQZA90spGTvl6hxtsGarkeZxYQiUwpszW5M330EHZ4e3G5KjaitKa9VoaLOgczEeNnnPHu0Dhfb1avhRNLuf5y6BGdnN5aaM/xWXVLK/fMhVdtLzRmovXFzsVA3+SFtiH7Od0QZAJZVVMs1qsssJiwzZ+BaV7c8ZllvTFMK18p3TuDZo3Vwe76XfU5FnQMf+dxPIJJ2Xz7dIO8bEKr/XVZRrWq7zGKC2/M9nj1ah2UV1WG/B4qtMb29vb2x3gktKe9gR+RrIPPrQmHcUSiMO4oFxh3FilaxN9yw0k1EREREpDEm3UREREREGmPSTURERESkMSbdREREREQaY9JNRERERKQxJt1ERERERBpj0k1EREREpDEm3QPkWF+C3o1L5H/lKwrCfm35igKcfaAYgPf21Y71JWG97uwDxRG1MxBbCs2arK+p3ObZB4qxpdAc8DmlOYZBb3skOHzvHFXciTgKh/IzLc0xhP13VsZrNPRuXBIwLgZCGWvlKwpU3yPl3zPc7+Jos7PUqvo7Rdo3KD9Tx/oS7Cy19vkarfqgYLToX5WxtqXQrPoela8oYNz1QfRTyv8i6RuUn+nhe+fg8L1zwnqdFn1QMFr0r76xFux7dPaB4rD/JjQwTLr7SXQCu22NGPPSp/K/MouJwduHLYVm2Jrd8mdrut7vVt9cSD84cWBWxp3ycQpOGWvTMpLx8Y07yTnWl6CiziH/nte6PFE9wRgODt87B+us2aq4q6hz8OQ4DMpYW2rOwOmmdgDek5gyi0n+PW3Nbsadj52lVhxYPRuL9h6Xf6etB23YXmIN66RtNFPGmu9xV9hZaoU1XR/tXRu14mO9A8PV3ntmoqLO4XeL90V7j+PA6tnYUmiWB3dlAlnV2IL5bx3rc/uH752D4uw0+bOzsxumXQdVz1Fud9He4/IWuKU5BhxYPVv+rqLOgZXvnJDbBSC3vWjvccwel4LtJerOa+tB7/sSj/duXIKtB23YUWNH+YoC1e1qRdui3arGFhRnpwV9r9Z0PZyd3XJfxb+V71tsg9QO3zsH17o8fn/XKa9VwbG+BOUrClSftfJvGM5d47YUmgPGgvKk6OwDxbKTfvGEXfUdUP5OGbM7S624e5IRmYnxMOoS5Ot8T65ErIrHt5dYsdScgZXvnPDbN2XbjvUlsDW7UZydFvC7AvjHWmZiPI5fbUNpjgFGXYL8u4lt+/4dRrOdpVYUZ6f5xdDKd07g8L1z8PJdUzHltSr53E0FN6uDvvETTLBYEJT9jm/fEmmfpIxTALA1uzHltSr5uDVdj7MPFMv3FKwPD9Sf+t6KHLgZawCQpR+Lo1daAAB3TzKios4hn7fb1si4UyjNMWBTgRlbD9pUf9cdNXZY0/XYVGCWfUCo414owWJBWGrOkJ+Jb98SaZ/kG6eAt19WPt67cYn8nkXan/pSxpryuKu0qSBwMk7aGPFJtyExHq4uz6BuUxyknzt+we93lQ0u1YGpd+MS1ZdfTEEJ1RmUryiANV0vtyM6E+XryiwmVRJ8YPVsjHnpU/lc8SUUP+8stcovZXF2muqgtL3Eqjownn2gGNvmWuQXfHuJVe6L6ByUP4u2lQIleL5JoPJAJjqaK+7rqvcxXGkRd4C349xtawz4O+XB4PC9c1QxdPjeOXCsLwmYjAqhYkH8bE3Xo6LOgSmvVckDjq3ZjR01dlmhUx4wlImLNV3vd1BSfjdEbJXmGDDmpU9VJ3qiLd+fRdti+4HizjcJVMbdgdWzsfWgze91wQ5QQ51WcTc3y5uwBqJMfsXfWvQvO0ut2F5ixfGrbQGTUSFULAjTMpLl56TsRyPtk0SiLH4WsbSz1CoT79NN7ao+O1QfruxPlXz7MOW/i7PTMClVp0ruAGCdNXtYJkBaxd2a/HFwdnYHPGnbXGnzS7hDHfcCCRUL4nXK2FL2aZH2ScpRDaF34xIcvncO5r91DOUrCjAtI1nGRKT9qZJjfQmMugQA3lhT9n/KbRy+dw5ePGHH3ZOMQf9GNLhG/PQSw9jBP6+YPS4FAEIeRADvl8zZ2e1XQfM90/W18p0TquSossHllwBUNbbIL/bKd07A2dmNnaVWPD47F7Zmt/wiVja4UFHnwDprtnytrdkt912cJCg7NTEcFcjC8el48cTN54q2lXMggyWF8986hjEvfQpnZ7ccKqxqbMGLJ+yyYwmnMjFYDInanXNqEXcAYNQlhHVQLs5OwzNH6+TP8986BqMuIeRwbDixoIznHTV2VDW2YJ01G6U5BljT9djwyRn53A2fnIE1Xa+aE6k8QJh2HVR93mL4PZB11mxVzIu2lQeTzy83B3zt5kqbX6y9eML7et/3q2wv2PYGarjG3RX39T6fJyq3on/ZXGmDrdmN3y24LeTrwokFZWy9eMKOhePTAUTeJ81/65gq2Q1VhQ+nD1f2p0ri+6SMtUV7j8PZ2Y0xL33qV8Xv3bgExdlpqvc5mIZj3E1K1eFaGMl8OMe9QMKJBWVsiT6tNMcQcZ8k+iGlYH15f/pTJdOug6pYUx53xfvdUmiGUZcQ8qRksGgZe8PNiP9LWNJ0qGvtjEnbgTqMN2qvYlOBOaw5kL4VOiUxZCRc6/JgUqoOWfqxfgn6x/Ym1UEiWAVPWQEM9pxASZ+t2Y0s/Vj5sxhGDcaoS5AHqXCTSC1YUnXabTuGcSdiy/dzsDW7MSlVF9bfO1gs+L72ivs6pmUkBzwRFSeLlyMbGgAAIABJREFUyuHRQHyHdwMx6hL8TgCOXmlRHVTP9/H3VsbapFRd0CTSsb4E17o8mp0AjtS4A7zTKHw/h9NN7ZiWkRzW64PFgrOzWxVbtma3rOT1t08KNNTvK5w+vK8REWWszR6XEjCJFLEmKrThTsmJxEiOu3COe6GEioU3aq/Kf4sYnD0upd99ku+UlEDxM5D+VLkNZawpj7sAsG2uBavfPRlyG4NFy9gbbkZ80r3SYsL+i6Er0pESHXhpjiFghSPY4+FSJtti2FLLi+REgiWGUMtXFMgq0mBSTi9RJnXbS6yqKSzRsjLMDrm/2x7suAOg6nR9DTTugOjFAnAzwbI1uzHmpU8DzicfDMrvk4g1QTmFRfzsO6dzsA3XuFMmsUqDEXfRigVAnWApp6sMNt/pJb7T6QLNOa5scMHW7MZSc8agJ93DMe7Ot3aG7H8GGnvRigVAnWyLPkeri2aV00t8487W7MbppnZ8frl5wN/bcGkZe8PNiJ9e8vDUnEHfpugYH5+dG/D3Yv71+dZOZPoMq6zJHye3EYwYoh3z0qdBnzfJ58xRVJiuuK/LL5uw1JwR9KxYDJ/6DncGEyjps6brwxp6nv/WMVTUOeR723rQJg+y0U64AeDhaYMfG3LbGsQd4B2uDDb/7uW7puLsA8WqaoySNV0fshocTiz4xpaoMClPRAVx7UOgyroYPlUOd4YSKOmbm5UW1tDz5kpbwFgT/1Ym3FWNLZom3MDwjLvdtsagFzY/PjtXHtjFiJvStIzkkFW5cGLBN+6Uc+4j7ZPEdJRw+pz+9uHi976xZmt2y2sIVr5zIuxlEwfDcIy7zZU2GHUJAZft21JolosWRHrcE8KJBWU/qhxFjLRPEtNRgk1pU4q0P/Vl2nVQFWvK4+6U16qwcHw6yiwmufyiNV2P4uw0zYp7WsbecDPik25DYrwmHYKY1+e7nqs4k1z5zgnZYSifs6nArLpaPRjll/nwvXP8OhTlRUblKwrk3Kznjl+ANV0vO/LSHAPKLKag86wB9QFtS6E55JDc55ebVVNeRNvhDsVn6cfKxC+WF6s9OitX0yEvreJu5Tsn5MoKSqJSKJKWqsYWbJtrkb8/fO8cODu7+5y/11csKGNrS6EZxdlp2G1rlCeiL981VT735bumqi4qCkR5QAtV2RRJnzj4iraV8y1DCbViDuCtDIW7stBADNe421Fjh63Z7VcFFJVCsdrR++edqr5JLEf2q0Pf9tlGX7GgXIp1U4FZzpftT5+kPDEIVW0cSB8OBF8xR/Ddd/H3CnSR/kAM17gDvKNu20usqsRbVI0r6hzYUWPv13FP6CsWlP2o6NMqG1z96pOU/atYMCGQ/vanSr4r5igLLqZdB1VLf9qa3ahqbAl5oX1/aR17w82In14CAM8vzMf+i02DOudsR40dO2rsfjeI8D1wi1UYfIftQ5nyWpXfa6oaW1TzIivqHKqhS3GmXtngkssWis482BXOgPegMjcrTbbl7OyWa6CW5hiwo8aObXMtchheTDlQvudIqtTKA/DcrDS/uenRYEnV4SlFR6oVLeIO8P69zz5Q7DfvWvk5zH/rmLyBjvh9Xx1qX7EAeOfK3j3JiN6N3thSTs0QKz+I14eaplHZ4JLL8okES8TtmvxxqGxwoaqxRbVkIKCeHhLJvFdlrK3JH6eqFu0stcKoS4BRl+CXVAZbAq4/hnvcTXmtyu+7D6j/RqKfUfZNff0N+4oF8VldcV8P2I9G2ietfvckDqyeLZ//4gk7MMmIuVneSv77553YVGCWqzz0pw8XlPsvvkPKv4VYcjHY8q+DYbjHnXK50GDL80V63BP6igXAe2IUqE8TfU+4fdL8t47Jm+kB3lyhos4hp888d/yC3BdRkQ63P/XlG2vhnvgOtmjF3nAypre3tzfWOxEN1Y42zH7jb7HeDYoxQ2I8/njXVKyaPC4q7THuCGDcUWww7ihWoh17w8WIn14iFJlScHzNHRzmGMVi0Qkw7ohxR7HAuKNYYcId3KipdCs98skZvHKmIda7QVFiSIzHqsnj8NQdlpgeDBh3owvjjmKBcUexMlRibygblUk3ANS1dmLfd1dRXufQZKkjii1DYjyKTCm4M8eAVbeOQ5Eppe8XRQHjbmRj3FEsMO4oVoZq7A1VozbpHo3GjBkDAOBHTtHEuKNYYNxRLDDuKJRRM6ebiIiIiChWmHQTEREREWmMSTcRERERkcaYdBMRERERaYxJNxERERGRxph0ExERERFpjEk3EREREZHGmHQTEREREWmMSTcRERERkcaYdBMRERERaYxJNxERERGRxph0ExERERFpjEk3EREREZHGmHQTEREREWmMSTcRERERkcbiY70DFD379u2L9S4QERERjUpjent7e2O9E7Hg6vLglTMNKK9zwNXlQV1rJ1xdnljvFg0SS6oORaZUzDIm49FZuTAkDo3zS1eXB/vOXUX5OSfqWt2jI+4ufef9/4RbY7sfGjMkxsMwNh5FplSsnGzEw1NzYr1LEuNu5GLcDTGjJO6AoR17Q9WoS7pdXR48fbQOr5xpGPlffpIenZWL5xfmx6x9xt3oxLijWGDcUazEOvaGulGVdFc72rD63ROoa+2M9a5QDFhSddh7TwGKTClRbbeutROPfHIa+y+6otouDQ1FphTsvacAllRdVNtl3I1ujDuKlVjF3nAwapLuakcblpQf51n3KGdIjMenK2dHLfGua+3Ekn3HeaI3yhkS43F8zR1ROwgx7ghg3FHsRDv2hotRsXqJq8uDRz45zYSb4OryRO3kS8QdD0Dk6vJgyb7jUWuLcUcA445iJ5qxN5yMiqT7ha8uoNrRFuvdoCHC1eXBY5/Xat7OC19d4BArSXWtnfjXI+c0b4dxR0qMO4qVaMXecDLik25XlwfbT9hjvRs0xLxypkHTigzjjgLZfsLOuKOoY9xRrGgde8PNiE+6efU0BbPvu6vabfvcVcYd+XF1eRh3FHWMO4oVrWNvuBnxSfdnl5pjvQs0RGkZG+XnnJptm4Y3xh3FAuOOYoV52E0jPumudrTGehdoiNp/qUmzbTPuKBjGHcUC445iRcvYG25GfNLtus4hLwpMy+FQxh0Fw7ijWGDcUaxw6tFNIz/p5odNMcC4o1hg3FEsMO6IwjPik24iIiIiolhj0k1EREREpDEm3UREREREGouP9Q6Mdr0bl/TrdVsP2rCjRrubEZSvKECZxYSKOgdWvnNCs3aIiIiIRgMm3USj0NkHimFN10f8Oq1PwrYUmrG9xApbsxtTXqvSrB2KDXEyH6loxIMogIx56VNN26HoE/1Kf2gdD6Iv1rqQRkMDk+4YC/aFFgcAfhGJiIiIhj8m3RQQp5SMbMGqhqLqwmlFpIVgMSUq4BzhIC3sqLEHLF4pK+Ac4aBoYNJNRENGsIMjkdaYdFEs8CRzdGHSPcwp54MtNWdgmTkDSfFxsLd14fFDtXi99goA7xn9hmk5mJicCKMuAQDQ4elBbbMb5ecc2HbknGq7wS6kVM57fHXZdCyeYIA5JREAYG/rwr5zV7G50haNt05EREQ0bDDpHiE2FZhhTdfD3taFiz3XMTF5LKoaWwAAh++dg+LsNACAs7MbtmY3AMCarkehMQWFxhTMMqVENJ1AbFNsLzMxHuaURGwqMGNaRjKWVVQP/pukIUN5UvaVow0bZ06EUZcAZ2c3dtsa5YlXaY4Bv1twG8zJifLkDPBeGPdFYwt+/tEp1XaDXUipPLk06RKwcrIJhcYUAN6Y/vxyM7ZU2lDf2hmFd0+xooyPJ7/4Ds/+8FZY0/Xo8PTg8OUW2e/kpeqwo9SKaRnJqguG7W1d+MbVgQ2fnvGLlUAXUirj/P+cbcSjs3JRaExGUnwcOjw9qHG241eHvkVlgysK755iScSH5dXD2LN8hjym1jjbUPbOCRlPO0utuHuSEROTxyIpPg7AzePuC19dkIUwIdCFlMo4/1FFNV5eMhVFphRZMKtxtuHl0w0cFRyGmHSPENZ0Pf5ytlEmMXmpOtS3dmJLoVl2Dr4XZeal6lCxogCFxhQsM2dE1F5xdhpePGFXVbXFAWqpOQOlOQYeiEaBaRnJKLOY5EFlYvJYeVK3s9SKTQVmAN5RFfH4xOSxsKbrYU3X44fZaRENr66zZqM4O01uTx93C8wpiSizmHC7KRW5fz40+G+Shhx93C3YdddUAJAn/e2eHgDA2vws7Lprqkx4RNyJwoA5JRGn1s3D9N1Hwj5Js6Tq5DaVRYvi7DS895NC/Pi/atjfjRIflhXBmq6X/Y8+Pg71rZ3IS9Xh4OrbVSO/F3uuyz7KqEvAnuUzkJ00NuxkWR93i9ymva1L9rGFxhRsL7HCpEvwG6WmoY1J9wjR4elRVQ3FwWSpOUMmRL5f9PrWTvz2WD32LJ+BpPg4maiHo6LO4TeNZOU7J9D+y0VIio/DmvxxPAiNAtZ0PWqcbZj1+t8A3DzZy0vVYf20HACBlxkUJ2jWdD3W5mf5VX+CKc5OQ1VjC+a/dUw+JqpC5pRE7Cy1cnrTKGBOSYSzsxtz3jwq+6y8VB0A4Nkf3oqk+Di/CiRwM1aS4uPwmx/e6jfSEkyhMQX2ti5M33szUS/NMWDvPTNh1CXgdwtuU8UkjVzWdD3u/+Br2WeJuNtRapVxufrdk6rjnzJWNkzLCTvpNqckosPT49eeKJZtnDmRSfcwwztSjhAX268HfHzlOydg2nUw6AFBmeysnBz++rkf25tC7sekGx0RjXy/PVYv/y0Skg3TcnCt0wNnZ3fAaUsr3zmBjhuVyRmZyWG3ZWt2+8Xyjho7apxtAIC5WWkR7z8NT++ev6ZKqOtbO1GaY5A/bzrgP91IGSs5SWPDbqvD04OSvV+qtlfZ4MK7568BQL/WvKfhqcbZpjpuipiwpOrQ4enBblujX8FJGSuZiQkRtfcvVd/5tSf6XKMuQRXzNPSx0j1CnG5qD+t5Wwq9w/1LzRnI0o/t98Gi/JyjX6+jkSdQlXrbkXN9VmAutl+HNV2PWaaUsNsKFud1rZ0oNN6c80gj39+utPg9Vtng6nO6koiVSAoDF9uvBxwF/NuVFjw4JZtxN4rUBRkNFqN9wYhYUV7b8n/Zu/vgJs48X/RfBxtL+EUykm0cZFskFgMBGxt7GBMsEiCTnHBrTRjuhrDMbM3APVP3csFkarNza1ObzG6yNeeeOTmV4WWyVXMrZGqyuSR7KsPYt06ymUlCgp3Yw0AwdhIIYhIDIsYg2bKxLRnL8f1DPE23uiVLtlryy/dTRWG99fOo9eunf/3000/HQqtX/I2L1/H6wysAAFX52TyrPIMw6Z4DGips0oWW4byB0UktkxesEXBnvOxEtpcVoHDBfHy7IBdFC+bjW+YFce98AOCsZzDuz9DsFMspemeRGVX52XCYjCjJMagurIzVZbZ3dFuks7xypTkGbFlihdWQgVXWbNhzDCibRNy5B0cmU0Waxph0z3LhF7Nd7Pej62YAl28G0NLdjzcuXpeuyiZKJDFzibiQV244OIbh4Jh0sVusPJM8SKS5Q8xcIqZPDecNjMbdMy0u0iSK5pDTgR0O7TMf3sBo3O2df+ybRFWNpgkm3bOcuJgt/OIzYXtZQbKrRHOA1gwS5/qGMHBrDH++PoCDHW5pqiyiRNGaQeIL3zCGgmN4z92Hxq88OOh0oN4e+/UrRLHQmpr3uv8WznoG8ccrfajKz5bufklzF5PuWU4kPUddPZqv/83SwmRWh+aIp6tLpZs0hV+AJizOiv1CNqJY/Mt37pFmfNj1/nnN6w3svMibEmx7WYGUcIdPpSv8eMXdya4WTUOcvWSWEzNE7L7d4y2U5hikaduIEs14+2DvE89NzYS7ocIW96lWoonkzg/F1NWhW5oJd+kkx9YSRVMomwkn0pSl39EYZkdzD5PuWe7IuW4AoXlmh368Hhd21uLCzlp0/WAt6u1WuPr9k76YkigS/+2DvXWLTNI8tsIhpwP/pfaeVFSLZrmBW6G4E/O/yzVU2NCydTUP9ijheobvTNn76kP3KV5zFplxdvu3OZSOAHB4yay3r9mFvpEgnnAUSncBDN2++M5tZFu3VcNiyMAORyFvK0sJ8fPTl3Bk4zJYDBno+sFaxd0oF6TPgzcwKk0ZSJQo//inL/Hg3WbYsjPx+sMr8ML9ZfCPfYOFmemwGDKktq/CEvs0lUQTeePidTy5qhi1hbn4/tJCPFqyEL0jQelulEDouiqti8ppbmHSPU2lvXQ8pvfFcgvtieZM1rrAUuuGJrHUK55betPsJU7tP11dirLbB3tA6ILKdy57sa/ZhUNOBxzlNqxbZEplVWkWuXQzgLpjn+D1h1fAYTIqLqhs6vKgodmFkmwDTmytgsNkhLPIzDmOKSHWvnkajZvLsdqaI9323RsYRVvPAH768V/Q3O2DZ1cdLIYM3jl3DksbHx8fT3Ul9BRr8kpzk17TJTLuKBrGHaUC445ShVMTh3BMNxERERGRzph0ExERERHpjEk3EREREZHOmHQTEREREemMSTcRERERkc6YdBMRERER6YxJNxERERGRzph0T5FnVx3G92yQ/jVuLo/5s42by3FhZy2A0K2xPbvqYvrchZ21cZUzFQ0VNl3m15Qv88LOWjRU2DTf4ywyJ7xsIiIiomRj0j1JziIzxvdswFFXD9JeOi79q7db0bqtOtXVm9YaKmzSbcEBwGEyqm4/z4n0o2vdVq042BMHb7GQH0iJOI7l4EZ+kJgM43s2aB6MTYX8AK9xc7ni4FW+PmM9AJ5rDjkdivUU73Yq/009u+pwyOmY8DN6HfhHokenhjzWGipsiu2ocXM5424Cop2S/4unbZD/pq3bqmPeR+vRBkWiR/saHmuRtqMLO2uZtyQJbwM/ScceXYmmLo/qVq7rj53Bia1VaKiwSYmkPNDbegY0b7sernVbNWoLc6XH3sAorEdaFO+RL3f9sTPS7YydRWac2FolvdbU5ZFu6y42LLHs9cfOoCo/GwfqlDu//S2h7yWeH9+zAftbXDjY4Ubj5nLU262qskW5bT0DqC3MjfhdHSYjvIFRqa7ib/n3FssgNc+uOrj6/Yq7wF3YWQvPrjpVjJCS/ABveV4WDneG/vbsqlNsJxd21uLCzlosfa0tZXWdblq3VcNhMiriTiSM8vaH1OSxtsmWh3N9QwBCBzH1dqu0Tlu3VTPuwhxyOrC33KaIsYYKGw7UOeAwGXk79SjksRbe2SUccjoU+2TSF5PuSXAWmWExZOCFM1dUrzV3+xQ7pfE9GxQ7czEERTzW0ri5XLFzE8ms/HP1dqsiCT6xtQppLx2X3nu40419zS7p8SGnQ2qcagtzFYnygTqHtCwglHA8W2OXErgDdQ6pLiLhlj8WZctp3RY4/EBCftAwvmcD0l46juv+W4rvQUqt26rROxJUHcwsfa0Nnl11ihgJX9+x3KpZ7Mzk5LEBhOLDYTICgBRnWq/JDxQPOR14pMSChZnpsBgypM+F97yIbUU8f6DOgU22PGx5q1NVN3nZ4kCktjBX8wAVUB/gLcxMx5kbg9L2LN8mD3e6VethLjvkdKC2MFcVQ1ve6kTrtmq8vHGZlCiKJEkIj59IIsWCID/YDz+gj7cjQB6nAODq92Ppa23S8w6TUZH8Ruo40erE0Dr4ELEGAAXG+Th1fQAA8EiJBU1dHul9R109jDsZZ5EZe8tt2N/iUqzXgx1uOExG7C23SW1AtM6maCLFgrDJlif9JuFtS7xtUnicAqF2Wf682BeG1y2W9jScPNYiJdZ7y7WTcdIHk+5JqMrPBoAJe3YOOR3wBkZVO3P5DklLeEPR3O1TbSxtPQPSjmzLW53SqdqSHANc/X5pA2zu9qGpy4MdjkLpOVe/X6p7+EECAJzrG8K6RSbNuq1bZJJ6bORlN24ulw5Cjrp6ND8rdlSeXXXY+vanaO72oXVbNU5dH5DqFksjOZc5TMaI61e+MwjvlWzdVj1hT3i0AzDx2GEyoqnLg6WvtUk7HFe/Hwc73NJpTPkOQ564OExG1U5JvmMUOx5nkRlpLx1XnF0RZYU/FmWL5WsdWIQngfIE6sTWKuxvcak+x54fpZqCUMKqRZ78hvdKHnI6cKDOgTM3BqO2l9FiQVielyX9TvLOi3g7AkSiLB6LWDrkdEiJ97m+IUVHSbSOE3knhlx4Eij/u7YwFyU5BlWP9g5HIRMgmcfL8uENjGoetO1rdqkS7midTVqixYL4nDy25G1avG1S+FkNIBRLrduqsfbN02jcXI7leVlSTMTbnsp5dtXBYsgAEIo1efsnX0brtmoc7nTjkRJLxHVEicUx3ToqyTGgdySoeO7fL94AgJjG0MrHT4oNSBBHr0LvSBAlOQYUGOerkoX33H2Kz0dKJkRZ4UfichZDhmqn4Or3o8A4X3osenSiLUPsoLSWR5HFur5qC3Px3Kku6fHaN0/DYsiIOoZWHIDJd3Di1KQgP4g82OFGW88AdjgK4Swyw2EyYvf756X37n7/PBwmo2JMpHwHYT3SojjIes/dF7FuOxyFigNNUbZ8Z/LRtX7Nz+5rDiXVbT0DONzpRtpLx3G4M/T58O8rLy/S8uYiiyED1/23Jnyf6LkV2/e+Zhdc/X784v57o34ulliQx9bhTrfUMaDVEeANjCrGZcsPVNe+eVqR7EbrhY/UcSJvI+WdGHJie5LH2vpjZ+ANjCLtpeOqXvzxPRtQW5ir+J5zndY+VMtTVcURO5uiiSUW5LEl2jRnkTnuNkm0Q3KR2vLJtKdy1iMtilhLe+k4vIFRrD92Rvq+DRU2WAwZHJ6TZOzpngSRVDqLzJqNbaTnYyXvmRM9KHpeYCN6/kRvTuPm8og93VMhH+4g7208UOdQDGGhqREHdOEHP65+v3QmZCLy30d+kBb+2ev+W1iel6V59kecoZGfHtUSfnpXi8WQoToAOHV9QLFTvXwzMOEyRP1LcgwRk0jPrjr0jgR51mUSFmamq36Hc31DWJ6XFdPnI8WCNzCqiC1Xv1/qSJhsR4DWqf5wkTpO9pbbpO1sojMi8lirys/WTCJFrIke2liH5FBIpM6miX5fIVosiI4y4E77VpWfPek2KXxIilb8TKU9lS9DHmvyzi4AeLbGjq1vfxp1GZR4TLonobnbB1e/H09VFWsm1ye2VqGpy4PLNwOq5PXxsnxpGU9VFWsuX/QWRdvpl+QYFI/lO7vwHdwmW17EDVT05MR6AZ58oxccJmNMvYLiFBoAaYzu3nIbLxqKg9b6F6Z6sAck7wAMuJNgiYtCtcaTJ4L8IFYc4AnyISzicfiYTgrFnTyJlUtE3CUrFgBlgiUfrpJo4cNLwq9h0Wrjxb5lky2PSTeguQ+Vm2rsJSsWAGWyLdocvWaDkg8vCY87V78f5/qG8NG1fl78nAIcXjJJ4hRj+NRSIqi3vNWJfc0uWAwZivfsLbcpLpyJRL6Da91WrRpeIh/v2Li5XDpN9MKZK3CYjNIwAmeRGfV2a8RxwAAUy26osEXtHfjoWr/i9JkoO9ZewQLjfOnggONm4/fRtf6I4+9e3rgMF3bWKnpj5BwmY9TeYHEAFn7qWy48DkUPk/zsjyAuUNTqWRenT+WnO6PRSvpqCnJjOvW8r9mF/S0uKaETO1fxtzzhbusZYMKt4airJ+JsQk9VFUs7djHMTW55XlbU7TyWWAiPO3nbEakjINKZDDEcJZYza5dvBrAwU9k3Je84iUZ+vYyINVe/X7qGQH4tDmkT+1CtafsaKmzSTGHX/bdUMRKts0mIJRbk7aj8LGK8bZIYjhJpSJtcvO1pOOuRFkWsNXV50NTlQdpLx7H0tTasW2RCvd0qDSl1mIyoLczllJVJwKR7kg52uKV5ueVzh4bvtMPfE8sV1Utfa0NtYa70mev+W2jrGVD0YDd1eXBia5U0Bls0Gs3dPqw/dgZ7y0Nz28ovLtGyr9mFtp4Bqaxna+zY3xJq6JxFZhzscMMbGJXmK93yVieaujyK8d/xDAtxmIzS6bqaglzV2HSKbstbndLMCnKip1DEXlvPAJ6tsUuvt26rhjcwOuH4vYkOwOQHdA0VNtQW5uKoq0fqoXt54zLpvS9vXKa4qEiLfIcWrWdTJH1i5yvKlo+3jCbaNJVAqGco1uk856KDHW64+v2qXkDRUyimGH3nslfRISCmI/vpx3+ZsIyJYkE+j/Decpt0dm0yHQHyA4NovY1T6TgBIs+YI4TXXawvrZmx5qqmLg8O1DkUibfoNW7q8uBgh3tSnU3CRLEgb0dFm9bc7ZtUmyRvX8UsZVom257Khc+YI+9wsR5pUdxfxNXvR1vPAKecTQIOL5miWBLOSO+R7xTkV2JPtNyJeuK0ZiQRtJIKrefkG3b4hhhpZxatXK1lRUtwYlnWXJX20nFc2FmrGnctX19r3zwt3UBHvD5Rg7qv2YWaglzFZ/a3uHCgziElUa5+Px4psWB8T2hHIx+aIWZ+EJ+PNkyjudsnTcsnEiwxx/3jZflo7vahrWdAMWUgoBweEs+4V/kB3uNl+YreokNOByyGDFgMGaqkkvNP37H0tTbpgj85+ToSbZh8WMVE63CiWBC/1XX/LdXwJwDSMCh5vaK1HVvf/lTqsABuXyhXYkFNQagn/53LXuwtt0mzPIiZdLTKnoi8/mIbkq8LMeVipHsu0J2hiOFDw+SdSaKz6cTWKukgJlpnkzBRLAChAyOtNk20PbG2SWvfPC3dwRoIdYw0dXmk4TMvnLki1UX0SMfanoYLj7VYD3xJf2nj4+Pjqa6Enpi4UTR6jd9j3FE0jDtKBcYdpQrvMh0y64eXmDPZmU9EREREqTX7k+75TLpJm54HZDzYo1Rg3FEqMO6IYjPrk257rmHiN9GcZM/RLzZ4sEeRMO4oFRh3lCp6xt5MM+uT7i0xTo5Pc4+esfHg4jzdlk0zW6U1R7dlM+4oEsYwc97hAAAgAElEQVQdpYqesTfTzPqk+4fLilJdBZqmfrhcv9h44G59bihDM98qS2x3Z5wMxh1FwrijVNEz9maaWZ90mzPTmXiTypOrinU95fXYknzdlk0zlzkzXdeDPcYdaWHcUaroHXszzaxPugHgxXVlHFNEEnuOAT+T3fBAD+bMdN3LoJnnh8uK9B1by7gjDYw7ShW9Y2+mmRNJtzkzHcceLZ/4jTTrmTPT8WJdWVKutv+nNUtQac2e+I00JyTjYA9g3JES445SJVmxN5PMiaQbACqt2Tjz+Ld5xDWHmTPT8crGZUk9FXrs0XJOp0XSgX+yYoFxRwDjjlIn2bE3U8z6O1Jq+dH75/Gb892prgYliTkzHY8tycfPvm1PyUFX180Atr7diXbPYNLLptSrtGbj2KPlSY89xt3cxrijVElV7M0EczLpBkINw++/vIHGLg8+uOpLdXUowcyZ6ai0ZuOBIjMeuyd/Wpz2/KeTX+GfT3WluhqUJObMdOwvt+HJVcUp7e1h3M0tjDtKlekSe9PZnE2656K0tDQAAH/y1Prl2Sto7PKg3TMI30gw1dWhBJIf7P1w+fS6gIhxN3sx7ihVpnPsTUdMuucQJt2UCow7SgXGHaUC446imTMXUhIRERERpQqTbiIiIiIinTHpJiIiIiLSGZNuIiIiIiKdMekmIiIiItIZk24iIiIiIp0x6SYiIiIi0hmTbiIiIiIinTHpJiIiIiLSGZNuIiIiIiKdMekmIiIiItIZk24iIiIiIp0x6SYiIiIi0hmTbiIiIiIinaWNj4+Pp7oSqeAbCeI357vR2OWBbySIrpsB+EaCqa6Wvjo+Cv1fsS619UgCe44BldYcrLJk4clVxTBnpqe6SgDmaNwdfzP0/4Ztqa1HEjDuphHGXcox7ma/6Rp709WcS7p9I0H886ku/OZ89+zf+Eny5KpivLiuLGXlM+7mJsYdpQLjjlIl1bE33c2ppLvdM4itb3ei62Yg1VWhFLDnGHDs0XJUWrOTWi7jbm5j3FEqMO4oVVIVezPBnEm62z2D2NB4hkfdc5w5Mx3Ht1QlrTFg3BHAuKPUYNxRqiQ79maKOXEhpW8kiB+9f44NAcE3EkzaToFxRwLjjlKBcUepkszYm0nmRNL9y7NX0O4ZTHU1aJrwjQTxk48u6l4O447kGHeUCow7SpVkxd5MMuuTbt9IEAc63QlbXuPmcozv2YCGClvCljlZDRU2jO/ZgMbN5amuyoQu7KzF+J4NSf9sJL85363rmMNEx910+63H92zAhZ21qa7GhKayveqxrc+0uAOm12+tR1ugh6lsr3ps6zMl7mbC7zudcoCJTGXbTdRvoXfszTSzPunm1dMUye+/vKHbshl3FAnjjlKBcUepomfszTSzPun+8Ov+VFeBpik9Y4NxR5Ew7igVGHeUKoyPO2Z90t3uuZnqKtA09cHXfbotm3FHkTDuKBUYd5QqesbeTDPrbx3ku5WcU16Nm8uxbpEJFkMGAKDDO4ifn76ENy5eV7xve1kBnq4uRYUlNI2ONzCKj671Y8tbndJ7SnMMOOh0YLU1B7bsTOl9rn4/nvjDZ7gU5/goMabrmT99iRfuL4MtOxPDwTG0XhvAQ03teG7NEuxZuRgWQwa8gVG8fbkXP3j387jrrbUuxPK0lOYY8PrDK1BhycKC9HlSnXYfPx/3d5wMPU+HJivunluzBD9aViTFiXtwBK+c78azJ79SvE9rXXd4h1TxdMjpwCMlFjhMRgDAcHAMF/v9mrE8kcbN5ai3W2F/tRVNm8ul2OnwDqL+rU7UFubi+e/cA4fJGPG3j7Xe4etCLC9a3cK3170nXGju9sX1HSdjNsTdZNsDQLttbKiwYffyIpSZjFiQPg8A4Or343VXjyqWJ9JQYcOBOgf2t7hQb7di7aJcLEifB/fgCJ76+CLaegbw+sMrUFuYK9VH67efbJve4R3Eia+140hre/1v7ZdxsCOx4/C1zIa4C8f97p26y9tJEVdaUrHf5dCjO2Z/0p2EH/vK394PW3YmXP1+fHStH1np87B2US5ef3gFChfMlxpUsTMYDo6hrWcA1/23sDwvC/V2K96tr8RDTe0AgD/WV8JhMqLDO4hPbvcgrFtkQm1haJlr3zwddx0XZqbjyMZl6PAO4RPPTay25mCTLQ9nt38bZSYjWq8NYCg4hodsefj+0kL8+fqAVO/n1izBMzV2DAfH8J67D0PBManeF3bWYulrbVI579ZXYpMtD97AKJq6PCgwzsf3lxaq6lOaY0DL1tXSejvXN4QC43xssuWhZetqFP/247i/43SSjLgLX9dAKE6eqbFjlTVbaphLcwz4fMcaLEifhw7vILpuBlBgnI/awlzFuhZJsntwRFre8rwsVFiy8av1S+NOuoWWravhH/sGTV0e2HMMqLBk44/1lVicNR8d3iGc6xuS4vGg0yHV21lkxn/8VQUWpM+TthdR7893rMF9R09KO4nwGAUgJVvhWrdVo7YwV1pvYnv9j7+qwH/6/zqSknjrJRlxF097cGFnLRwmoxRTYl0f2bgMXw/dQnO3T2oXvYFRqR0Sv/MzNXb88UrfpH6Tv68sgTH9Lrzr7kNW+jxssuXhV+uXwh/8RhWPL29cpqh3rG26s8iMIxuXKWJ03SIT9parL7I75HRgb7lNsd7WLTLhQJ0DVkNG3AcX00kqkirud+/Ea/i+dHleFg7UOVT1me373Zlg1ifdejvkdMCWnYm2ngHFRrm9rABHNi7DszV2aSP6+8oSDAfHsOv984oE5uz2b+Nb5gUozTGgJNuAhZnpquUBgGdXndQ7Ey+LIQP/dqFHOpIuzTGg6wdrUWHJxv4Wl6qB2mTLk57bs3KxZr1F8nLI6cC+ZhecRWZssuXB1e9XNAhimXIHb683eZ0A4NWH7sP3lxbi1YfuUx310x1iXbsHR1B37BMp+RSNar3dCmeRGc3dPry8IZQUHO50Y1+zS1rGqw/dh0dLFqKhwoaDHW4sz8uCNzCqanjF7yzeF6/ekVGseuPP0uMrf3s/HCYjmro8qgOD5XlZ0vt+cf+9mvUWyYt8RyhiVJ6Iyw82hIYKG2oLc9HhHVTUaXtZAV5/eAUOr3conie1WNuD59YsgcNkjNg2/njF3Wju9mGTLQ8AsPXtTxXJtfidn6oqnlTSbUy/C9X/45QUD+IgNbx9EgcG8nJjbdNFjMrbUK1lluYYsGt5EbyBUUWdSnMMOP3XNfi7yuIZnXQnG/e7d7YzsS7k7SlwpxNFjvvd1Jv1Y7r19kiJBQDwxB8+Uzz/xsXraL02AIshAw0VNjiLzLBlZ6LDO6TqMVz1xp9R/NuPcelmAM3dPliPtGgeVfdOsTdBvjGJRt89OKLYWYQnVQ0VNlgMGWi9NqCqt/jOYh38eMXdAIDXXT2K9x3scMM9OKJ4bt0iE4aDY6oN/Afvfg5vYBQP3m2O+/vNJU9VFQMAXjnfrTgleOlmAK+c71a8p9KaDW9gVJG4AqF1bT3SIv3mS19rg/VIi6qs6/5bU6rry+e6FY/9Y98AABpk9bl0M4CrQ8pyagtz4R4cUdV7X7ML7sERaUe4vaxAitHwdRE+xGSHI3TW5eenLymef+PidbT1DKDCko3SHMNkvuacEE978N3ihQCAn378F8X73rh4HVm/PiFt+1ve6kTaS8dVibWr3z+lun50rV8RD0PBMQDq9ulc35DicaxtOgBUWLJUbahWGU9VFmNB+jy8fblXFaNHXT1YkD4Pz61ZMpmvOSdxv3tnHay/va9sCGsnwx8D3O9OB+zpTgD34IjmWKhzfUNSL05VfmhMVjwJTEOFDQ6TESU5BizPy1L0nCSKSIAm8vE19dXHl24G4A2MSo9z54d6FP94RX3RxBe+YWmcHABpHFukuWjl76XIwhNaILT+n6mxS48thoy4EpjtZQVYsTALq6zZsOcYUKZD3AGIafzgF75hzefdQyNSjBQumA9AnTwBobgV2yAAaezn3ywtxN+EDXsSr21ZYk3KGNuZLJb2QKzPWHupnUVmVOVnY5MtDwXG+bq0dwDgkdUxkljadAChIVtD6rh7+Vy3YhssuX0gV2Yyqtq8AmMoflfxdtlx4X43xJg+D97AqGpdXLoZUHV2cb+beky6pyFxGlTwBkZxdWgE3sCotCObaUQvk5zFkKE6/UWpc8jpwK7lRdJwjOHgGK4O3cLVoVu6JUB6i5RgMe6mj+1lBfjV+qWKts3V78fVoZEZ295FOqCc7DAF0t9s3O9qJffc76YWk+4EsGVnojTHoGpo5eNTz9wI3R5X9GrIvfrQffjePVbsev886opM2GTLQ1vPAH559ori1NKFnbUp2/jvX2RSPVeaY4DFkCGdfhu4FUqsv1ucp+rdkq8L4E5CJx9bSfHbvbxINRb0u8V5isfewCgWZqo3dWkcc6cb/37xBvaW2+AeHME/tH+p6Olt3FyesqT7W+YFms/bsu70yPQMh3qxwmMMgGInCgD+2wd/aS8dT1QV56RY2gNvYBQOk1G6tkBu6Mfr0eEdwto3T+NX65fCmH4Xnj/VhZfP3RkupXUtSLLE0qYDoXZMHotC+N0KRdsYPvabJo/73dB25g+OwWIyaq4Lh8moOMvJ/W7qcUz3FL1z2QsAeP3hFYrnt5cVYO2i0AwJBzvcaO72wT04ggpLFraXFUjvK80xSOOo3rh4XToN+ccrvYoNf3tZQUoSn4MdbngDo1i7KFdRb+DOdxbr4NeffQ0A+NGyIsW4WK26d3iH4DAZVTun7WUFGPrx+mlz2+np6oUzVwCo13VpjgE/WlakeE+7ZxAWQwYOOZUJzJOrQmO+W7r7pdOwX/iGFUlBaY4B6zQa/mRo6xmALTtTVW/5RVRAaLvRilGtuoup3MJPr5bmGHDlb+/H0I/Xc0x3FPG0B3+8Epoq9Bf336t43yGnAwvS5+Hi7WTAYshAbyCIZ09+pUgadi8v0u17RBNrmw6E2jGtGA2vu2gbtWY1ad1WPWNuKz5dcL97Zx2INi18Xbz60H2q5XK/m3rs6Z6ifc0uPLYkH7WFubiwsxbn+oakqYsWpM/Df2+/Ir33qY8v4sjGZTiycRn+8313S1NGWQwZONwZasTPegZRb7fi7yqLcf8iE4aCY9K0VsPBMc0p0PT20qdX8UyNXVFvMdZNfqFbc7cPTV0e1NutOP3XNfjoWr809Vd43Z/4w2do2boaB+oc2L28CF03A4r1Fn4hEik1d/vwnrsPm2x50roGIMXTe+4706ztPn4eLVtXY2+5DTUFudKUWWJmiTcuXoezyIzh4Bg22fLQuq1amp6vwqLuPU6Wn378F/zHX1Uo6i2PJ/kFes+d6sKBOocUo0BoysBw+5pdqCnIRb3diit/e79iajCx3pIxR/xMFmt78OzJr/Dd4oWKtlH8fu7BEfzjn74EEBqba8vOVLSfldZsGNNT0ycUT5v+xB8+w+c71ihidN0ik6ruzd0+HO50Y2+5DZ5ddWj3DKrWG3vA74g05vjyzQD2Nbu435VtZ/uaXXikxKJYF+J9w2HDOrnfTT32dCdA8W8/RlOXBwsz01Fvt2KTLQ8Xb0+oLz/1/8bF69j1/nlc7Pdjky0P9XYr/MFv8PypLsWO6nCnG/7gN9J7jOnz8PypLvzuy9Dcycm+yv3Zk1/hiT98pqj3wsx0NHV5VNPLbXmrE8+f6oI/+A3q7VZUWLLQ1OXBu27lxZWXbgZQd+wTtPUMYHFWpmK97W9xcfqsGDzU1K5Y1/J4EnPPAsp1XWHJUvx+4mr95m4fdr1/XpoVpN5uhS0rE++6+7Dr/fMAkj8Ournbh/uOnlTUu8KShbaeAdx39KRiyMLBDrciRjfZ8tDhHVLsfIW1b56W5iGXr7fDnW7FeiNt8bQHYl2LtlH8fvJpLuuOfYIO7yAcJiPq7VZUWrPh6vfjvqMnMRwcw2prTtK/Y6xt+qWbAVWM9o4EpW1Gbl+zC8+f6kLvSFC13uqOfZLMrzftie0y/J+YsQPgfldu6WttinWxMDMdz5/qUs0Ixf1u6qWNj4+Pp7oSeuLYTYpmfM8GXZbLuKNoGHeUCow7ShW9Ym+mYU83EREREZHOmHQTEREREemMSTcRERERkc6YdBMRERER6YxJNxERERGRzph0ExERERHpjEk3EREREZHOmHQTEREREemMSfc011Bhw/ieDYrb4o7v2YALO2sn/Gzj5nKM79mAhgpbwuoTa9k084X/1hd21sZ0gwOtmJ2qWMummS/8t46nHUt0+6RHG0rTU/hvHU87luj2SY82lKYHJt2kqTTHgMbN5Xj1oftSXRWaYw45HWjdVp3qatAc01BhY4cCJZ2zyIzWbdU8sJsj0lNdAYpfMm65u2WJFfV2K5q6PEkvm6anpa+1JaWcveU2uPr9KSmbpp8tb3UmpZy95TY4TMaUlE3Tz8EONw52uHUv56mqYtQW5uKoqyfpZVPysaebiIiIiEhn7OlOoENOB/aW2/BvF3rwg3c/13ztcKcb+5pdKM0x4KDTgdXWHNiyMwEA3sAoXP1+PPGHz3DpZiBiOeN7NsDV71f0/j23Zgl+tKwItuxMDAfH0HptQPOzsZTbuLkc9XYrAKDebsX4ng3Y3+LCwQ63ZtnbywrwdHUpKizZ0vI+utav6iUa37MBTV0enPUMYs/KxbAYMqS67j5+Pup3psicRWac2FqFDu8gVr3xZ83X2noGsPbN0wBCsfhIiUXq1RsOjuFivx8/P30Jb1y8HrGcCztr4TAZFWc7wn/7Du8gTnzt0/z8ROU2VNhwoM4BAHCYjFK8bHmrU7Ps0hwDXn94BSosWViQPg/DwTF0eIdU248YMvDMn77E89+5Ryq/wzuIvSdcaO7Wri9NzLOrDsb0u5D16xOarwGA9UgLgNDwjd3Li1BmMmJB+jwAgKvfj9ddPXj25FcRyxDtkWiDAPVv7x4cwX9rv6z5+VjKlY/HlbdxWmWLOq1bZILFkAEgFEvh24/4rP3VVrz+8ArUFuYCgFRX9mROXuu2atQW5uKJP3ymarPEa+uPnUFztw/OIjN+cf+9cJiM0u/lHhzBJ56bUc9kiPZItEGC/Lf3Bkbx9uVezc/HUq5o1wDgQJ0DB+ocSHvpeMSy5ft5sbxXzncrth/x2f0tLmyy5eEhWx4WpM+T6hqem1Bysac7gfY1uzAcHMODd5tVr62/24zh4Bj2NbsAAH+sr0S93YrekVE0dXmkYRy1hbl4/eEVcZX73JoleKbGjoWGdLzn7kPrtQGsXZSLTbY81XtjKfc9dx/aekJJu6vfj6YuD87cGIxY9usPr0CZyYj33H1o6vKgdySIertVc3zkamsO/q6yWFquP/gNNtny4v7OdEdztw8d3kFUWLJRmmNQvPbjFXcDAH559gqA0A5jb7kNxnl3Sb//1aFbqLBk41frl8ZVrrPIjCMbl6HCko22ngE0dXmwOCsTe8vVYxNjKffMjUEpHr2BUHy+5+6LWPbnO9agtjAXHd4hNHV50OEdQm1hLj7fsUa1HhZmpuPIxmXwB8fQ1OWBq9+PCks2jj26Mq7vTEpvX+7FgvR5eG7NEsXz28sKYDFkSAmJSAQWZ2Wi9VooVtp6BuAwGfFMjR3OInWbGU3L1tWoLczF1aFboXZk7BvpgE0u1nKbujzwBkalv9+57I1Y9pW/vf92GxqUYrTMZMTrD6/QHJfbsnU1bFmZUtm27EwcqHPE/Z3pDtGe/ef77la9VmHJQod3EM3dPpTmGPAff1WBCkuWtM95z92HhYZ01NutOORUx0w0797efwKQ2pHvLy1UDUuKtdx3LnuloXSiDY1W9jM1dhjT77ShxvS78EyNXfOCy7+vLMG6RSa0XhvAe+4+GNPvwveXFsb9nSmx2NOdYGLH7ywySz1oziKzlJiIxwsz0xW9j4JnV53UIxKrPSsXYzg4hvuOnpR6+EpzDPh8xxqpZyeeckUPTG1hLs71DUXtDRBl73r/vKLHQfQ2HHI6pAMNALBlZyp6J0pzDDj91zWosGTF9Z1J6cTXPlRYsvFUZbFifT9ashDewKi0vpfnZcEbGEXxbz9WfF78Xg0Vtph74H5x/71YkD5P1Qso770RYi23uduH8T0b0DsSjBp3omxx5kgQZ5Ref3iFIsYthgzVGaiz27+NCks2tpcVRO3hp8h+/dnX+P7SQny3eKGit+3JVcXS6wCkDoCtb3+qOLMgfq+nqopjPuNwyOmALTtTswdSJERCrOWKsykWQ0bUuBNlh7eh28sKcGTjMjxbY1dtP70jo4ozUK8+dB++v7QQP15xN8+yTNIbF6/jV+uXotKarXj+kNOBBenzpLNtu5cXAQCOnOtWtBPiDOAjJRYALsTCWWTGJlue6kyv/AydEGu5+5pdaNxsgMNkxFFXT8S2V5TtHhxB3bFPFPv5lq2rUW+3KnIOADCm34Xq/3FKeu/2sgK8/vAKrNfoFKTkYU93gokjcNHDKP9bvNbc7YP1SIsq8QWA3pFgXOWJHqXWawOKU+qXbgZUQ0wSWS4QamxE2eFJyxN/+AwAbjcud7j6/Yr3XroZQO9IUHFwQPETZ1nkDWp4byMQuiBRnO6Xu+6/FXeZFZYsuAdHVDuK12UXBOlRLhA6IHQPjih2aEBoPbgHRzQPXMNPq3bd3l4KF8yfVB1IfpZFedAs720EQhckpr10XJVkhl8wGwsR4w1hv33440SXC9xpz0T7Jrxx8Tparw3AYshQ9Xa/fK5b8fjP10Ptcu58tnlT8fblXlgMGdheViA9F35G+dmTXyHr1ydU7cRkDnbEfjy8fTvY4YZ7cETxXCLLBUIXWwLAK+e7Vfv5V853K94jfHStX/Fesd81cl+bUuzpTjBxBP5oyULpuQfvNit6G+UaKkJXzJfkGLA8L0vVQzgRkTCc6xtSvfbxtX7NISaJKDe8nHCXbgak07WUHOFnWcSpV9HbKLe9rAArFmZhlTUb9hwDyibx+y9In4eOIXXcvXyuG8/U2DU/k4hyhS98w5rPu4dGpDGPpD9xlkWc1XpuzRJFb6Ocs8iMqvxsbLLlocA4f1LtjvH2+NTwa0Au3Qyokp9Eliu4B0c0rz851zcUsb2lxBNnWZ5cVYw3Ll5HaY5BcUZZrjTHgC1LrPh2QS6KFszHt8wL4i5PHCT98Yp6yNsXvmHNNicR5cqFH8CJ+kRqb2n6YdKtg7cv9+L7SwuxvawAXw/dgi07E/92QXl0/G59paKB9gZGcXVoBN7AqHTRxVR5NJLeZJRLqfHLs1fw+sMrpNPWldZsRW8jEDr9umt5kXRmYTg4hqtDt3B16NaUEhE5rYQkGeVSauxrdmHX8iKpB/q7xQsVvY1A6GDrV+uXKtoYV78fV4dGEtru+Me+UTxOVrmUfOFnWZ6qDPX0ijPKQCjp/WN9paKNcQ+OJPzAfCg4pnicrHJp5mHSrQNxBC6/yEPe23jI6cAmWx7aegbwy7NXFD3gYlxhrHqGQ6fnl+epx0SH97oksly5+xeZVM+V5hhgMWRMatgKTY44y/Lg3WY8t2YJLIYMxdyvziIz9pbb4B4cwT+0f6majSHe5Hc4OAZblnoHEn56PdHlCpF6jbTqRPqSn2WpLcxV9Tb+av1SGNPvwvOnuvDyuTunyLXGw07EHxyDxWREaY5BdYDnMBkVQ0cSWa5gy87ULFurDSZ9ibMsz61ZgseW5KvOKL/+8Ao4TEb824Ue/PqzrxUdEPHeQXLgViix/m5xnmqYSPhvn8hy5XYvL1LN9PPdYp5dmUk4plsH4gi80pqt2dtYcntmhT9e6VU0ENvLCuJOQN64eB3ewCjWLspVjG0rzTFgXVgynMhygdBYNq2yAUizkUSbBYAS7+3LvaGLVR2Fqt7GqvzQRUdf+IYVia9WrMSiwzsEW3am6mp4cRGRXuUCkGaBCC9bfqEbJY/oXXx54zLFY8FiyEBvIIhnT36lSFbDYyUWYthK+IxHWnfPTWS5wJ32LLzs7WUFWLsoF97AKKcCTCJxLcsTjkLYsjNV0/eJjqR//NOXin3wZO60LDrOfrSsSDE7ktb+M5HlAsALZ65oll2aY8CPlhUp3kPTG3u6dXLia580ddrRsAsvznoGUW+34u8qi3H/IhOGgmOw3x6PNhwci/uiwudOdeFAnQNHNi6TetfXLlJfSBZPuY1feXCgLjSfd+Pmcrxw5ormRSAvfXoVz9TYpbKHgmPSGHGtC91IX+Isi8NkVCWeZ24MYjg4hk22PLRuq8Z1/y0UGOdPeuaYJ/7wGT7fsQZ7y22oKcjFdf8trFtkgjFdeSwfb7nuwREszpqPxs3leM/dp5nE/PTjv+A//qpCUXaBcT5qC3MxHBzDTz/+y6S+E02OOMviMBk1r19xD4ZOq1/YWYtzfUPISp+HSmu2KlZisa/ZhUdKLKgtzJWWJ9qc4bDT/PGUe/lmAA6TEe/WV+Jc35Bm27Wv2YXHluQrys5Kn4e1i3KxIH0e/ns7E59kE2dZAPX1K+I3Pf3XNfjo9rVH4h4V4bEykeZuH5q6PKi3W6Xlydsc+f4znnLFfnn38iJssuVpzp7T3O3De+4+bLLlKZYp5gt/z93HmXBmCPZ060QcgYf3NgKhK5sPd7qlOarr7VYY0+fh+VNd+N2XoXk6w+e9jeZghxtP/OEzXOz3Y5MtD5tseejwDql2APGUe+lmAO+5+2DLzkS93Sr1VoZ79uRXirLr7VYszExHU5dHNT0c6U+cZQHUvY3N3T7sev+8NLtHvd0KW1Ym3nX3Ydf75wFANeVaNJduBnDf0ZNo6xlAhSVLmrtYLGuy5f7+qxvSc5EuTGvu9qnKrrBkoa1nAPcdPckdUAqIXkatm4XUHfsEHd5BOExG1NutqLRmw9Xvx31HT2I4OIbV1py4ylr6WhuaujxYmJkutTnPn+rC1SHlbDjxlPv/fP41vIFRbLLlqWZdkg/vrDUAACAASURBVCv+7ceKsjfZ8nDx9s3Fot3kh/Qh2rnwM8oA8FBTuzRHdb3diodseegdGZX2WY7bw5RiteWtTjx/qgv+4DdSm9PU5cG7YfcTiKfcl891S/cNiNb+PtTUrii73m6FP/gNnj/VhYea2mP+DpRaaePj4+OproSe5HewIwo3lfF10TDuKBrGHaUC445SRa/Ym2nY001EREREpDMm3UREREREOmPSTURERESkMybdREREREQ6Y9JNRERERKQzJt1ERERERDpj0k1EREREpDMm3VPk2VWH8T0bpH+Nm8tj/mzj5nJc2FkLIHT7as+uupg+d2FnbVzlTEVDhU2X+TXly7ywsxYNFTbN9ziLzAkvezZo3VatiDsRR7GQ/6bOInPM61ker8kwvmeDZlxMhTzWGjeXK7Yj+fqMdVucaw45HYr1FG/bIP9NPbvqcMjpmPAzerVBkejRvspjraHCptiOGjeXM+4mINop+b942gb5b9q6rRqt26pj+pwebVAkerSv4bEWaTu6sLM25nVCU8Oke5JEI3DU1YO0l45L/+rtVgbvBBoqbHD1+6XHDpNRdatvTqQfmdgxy+NO/jxFJo+15XlZeO/2neQ8u+rQ1OWR1mfvSDCpBxgzQeu2auxwFCrirqnLw4PjGMhjbZMtD+f6hgCEDmLq7VZpfbr6/Yy7MIecDpzYWoX1x85I62l/iwsH6hwxHbTNZfJYC9/vCoecDjhMxmRXbc5KT3UFZqpjj65EU5dHdYv39cfO4MTWKjRU2KSdu2dXHSyGDACAq9+Ppa+1Tbj8xs3lqlvCht/1S56Yrj92RnELXPlrbT0DWPvmaQCQDghqC3Olz1XlZ+NAnbLx2t8S+l7i+fE9G7C/xYWDHW5V3UTZziIzTmytQlvPAGoLcxXlyjlMRngDowBCBy/ib1E/8VlRR7qjdVs1ekeCqvW69LU2eHbVoXFzOba81Sm9V74OY7lrXEOFTTMW5AdFF3bWSo304U63YhuQv+YNjMJ6pAVAqGF/pMSChZnpsBgypM+FH1w1dXmw5a1O6fkDdQ5ssuVhy1udqrrJy/bsqoOr34/awlxFuXLhsbYwMx1nbgzCWWSGxZAhrTex7PD1MJcdcjpQW5iriqEtb3WidVs1Xt64TGrXDjkd2Ft+p3cwPH4iiRQLgrzdCW9b4m2T5HEK3GmXxfMOkxEXdtZK3yme9jT8VuTAnVgDgALjfJy6PgAAeKTEgqYuj/S+o64exp2Ms8iMveU27G9xKdbrwQ43HCYj9pbbpDZA/NZCePxEEikWhE22POk3CW9b4m2TIu3X5c+P79kgbWfxtqfh5LEm3+/K7S3XTsZJH7M+6TZnpsM3EkzoMsVO+oUzV1SvNXf7FDsmseGJjcWzqw6t26o1k1FB3vshjO/ZoPhcvd2qSIJPbK2S3j++Z4OiwRHDXsTj2sJcxU7pQJ1DsWO8sLMWz9bYpTofqHNIyxaNg/yxvGxBK8ELTwLlOzLR0Fz330LaS8dVDehMo0fcAaGG86irR/M1+c6gdVs1HCaj9Du0bquGZ1edZjIqRIsF8dhhMqKpy4Olr7VJOxxXvx8HO9xSD518hyFPXBwmo2qnJI9TEVvOIjPSXjquONATZYU/FmWL5WvFXXgSKI+7E1ursL/FpfpcpB3UdKdX3NUUhBJWLfK2TKxr0b4ccjpwoM6BMzcGNZNRIVosCMvzshRtnGjT4m2TRKIsHotYOuR0SIn3ub4hRfsZa3sqF96Gyf+uLcxFSY5B1QGzw1E4IxMgveLu8bJ8eAOjmgdt+5pdqoRbtC/i8SGnQzMZFaLFgvicPLbkbVq8bdJE+/XGzeVYnpclxUS87amcvKOvtjBX0f7Jl9G6rRqHO914pMQScR1RYs364SXm+Yk/rqjKzwaAqDsRILQBWwwZip3Sc6e6UFuYG/V07L5mdRIQ3hC39QxIG/aWtzrhDYzikDPUWHgDo6peO/nRtavfL9VdHCTIGzVxOkrLukUmHO68815RtnwMZKSkcO2bp5H20nF4A6PSqcK2ngEc7nRL3zeWnolEMWfqd8ypR9wBgMWQEdNOubYwF8+d6pIer33zNCyGjKinY2OJBXlsHexwo61nADschXAWmeEwGbH7/fPSe3e/fx4Ok1ExJlK+g7AeaVH83uL0u5YdjkJFzIuy5TuTj671a35WbE/yWDvcGfp8+PeVlxdpeVM1U+Puuv/WhO8TPbeifdnX7IKr349f3H9v1M/FEgvy2Drc6ca6RSYA8bdJa988rUh2o/XCx9ueyontSR5r64+dgTcwirSXjqt68cf3bEBtYa7ieybSTIy7khwDemNI5p+qKoar3y+1L83dPjR1ebDDURj1c7HEgjy2RJvmLDLH3SbFsl8XJtOeylmPtChiTb7fFd9X5CfRDkoSRc/Ym2lm/Zqw5xrQdTOQkrK1essOdoROW4vEPZrwU1fyZYlTRkLvSBAlOQbpb7l/v3gDe8ttUqIfqQdP3gMY6T1aSZ+r348C43zpsTiNGonFkCHtpGJNIvVgv72+dFl2CuNO/M7hv4Or34+SHENM6ztSLIR/9rr/FpbnZWkeiDZ3++ANjCpOj2oJP72rxWLIUB0AnLo+oNipXp5gfctjrSTHEDGJ9OyqQ+9IULcDwNkad0BoGEX473CubwjL87Ji+nykWPAGRhWx5er3Sz15k22TtE71h9NK+mJtT+XLELFWlZ+tmUSKWBM9tLEOyYnHbI67AuN81e/wnrtvwt9XiBYL/37xhvS3iMGq/OxJt0nR9uvCVNpT+TLksSbf7wLAszV2bH3706jLSBQ9Y2+mmfVJ9xa7FR9cjd4jHS/RgDuLzJo9HJGej5V8oxSNr54X14gES5xCbdxcLvUiJZJ8eIk8qTtQ51AMYUmWLTE2yJNddqLjDoCi0Q031bgDkhcLwJ0Ey9XvR9pLxzXHkyeCfHiJiDVBPoRFPI71uovJmqlxJ09i5RIRd8mKBUCZYMmHqyRa+PCS8OF0WmOOm7t9cPX7scmWl/CkeybG3eWbgajtz1RjL1mxACR3vy4fXhIed65+P871DeGja/1T3m5jpWfszTSzfnjJD5cVJXyZomF8qqpY8/UTW6vQuLlc0RsjiFND0XqDxWmrSKe+AUi92oLoYbp8M4CFYadyHi/Ll+odTpw+DT/dGYlW0ucwGWM69bz2zdNo6vJIs0Tsb3FJO9lkJ9wA8MPliY8Nadk6xB0QOl0ZafzdyxuX4cLOWkVvjJzDZIzaGxxLLITHs+hhkh+ICuLaB62edXH6VH66MxqtpK+mIDemU8/7ml2asSb+lifcbT0DuibcwMyMu6OunogXNj9VVSzt2OVn3ITleVlRe+ViiYXwuJOfRYy3TRLDUWJpc+JtT+Xk1/fIZycR1xBseasz5mkTE2Emxt2+ZhcshgzNafsaKmzSpAXX/bdUMbLJljdhb3AssSBvR+VnEeNtk2LZrwvxtqfhrEdaFLEm3+8ufa0N6xaZUG+3StMvOkxG1Bbm6jYDlp6xN9PM+qTbnJmuS4MgxvWFz+cqjiS3vNWJgx1ueAOjiikEn62xo61nYMIGW96ANG4uV+1U5BcZNW4ul8ZmiUZKXq+95TbFFfLRymqosEU9JffRtX7FmDVRdqyn4guM86XEL5UXqz25qljXU156xd2WtzqlmRXkRE+hSFraegbwbI1der11WzW8gdEJx+9NFAsOk1FKEhoqbKgtzMVRV490IPryxmXSe1/euExxUZEW+Q4tWs+mSPrEzleULR9vGU20GXOAUM9QpNl2Emmmxt3BDjdc/X5VL6DoKRSzHb1z2atom8R0ZD/9+C8TljFRLMjb0b3lNmm87GTaJPmBQbTexsm0p3KRZswRwusu1pfWRfpTMVPjDgiddTtQ51Ak3qLXuKnLg4Mdbrxw5oqibXIWmVFvt0a8vkhuoliQt6OiTWvu9k2qTZpovy5Mtj2VC58xR97hYj3Sopj609XvR1vPQNQL7SdL79ibaWb98BIAeHFdGT642pfQMWcHO9w42OFW3SAifMdtPdIi3UBH63Uta988rfpMU5dHcZqtqcujOHUpP1IXMz+EDxXQsq/ZhZqCXOm93sCoNAeqs8iMgx1uPFtjl07DiyEH8u8cTy+1fAdcU5CrGpueDPYcA34ma0j1okfcAaH1fWFnrWrctfx3WPvmaekGOuL1iRrUiWIBCI2VfaTEgvE9oR2NfGiGmPlBfD7aMI3mbp80LZ9IsMR0m4+X5aO524e2ngHFlIGAcnhIPONe5bH2eFm+orfokNMBiyEDFkOGKqmMNAXcZMz0uFv6Wptq2weU60gc1MnbponW4USxIH6r6/5bmm1avG3S1rc/xYmtVdL7D3e6gRILagpCPfnvXPZib7lNmuUhnvY0nLz+YhuSrwsx5WK06V+naqbHnXy60EjT8zV3+6SYEQcxkWb2kJsoFoDQgZFWmybanljbpIn26y+cuSLVRfRIx9qehguPtVgPfBMtWbE3k6SNj4+Pp7oSydDuGUTVv/851dWgFDNnpuOVjcvw2JL8pJTHuCOAcUepwbijVEl27M0Us354iVBpzcaZx7/N0xxzWCoaAcYdMe4oFRh3lCpMuCObMz3dcj96/zx+c7471dWgJDFnpuOxJfn42bftKd0ZMO7mFsYdpQLjjlJlusTedDYnk24A6LoZwO+/vIHGLo8uUx1NW3+/BciYDyzIBow5wIKc0N8Lsm//nQMY5Y9lz8+fORuROTMdldZsPFBkxmP35KPSOvG86MkwZ+Puv/7vQE4eUPotoHhp6H/T7LsLGuMuhfyDwIV2oLcHcJ0FvNeAHz8HWBaluma6Y9zpwH/7gtfhwdDf3mt3nvcPyR7f/lu833sN+F/3ALX/Kfl1ToHpGnvT1ZxNuueqtLS0SX82MzMTZrMZeXl5in+xPJeTk5PAb0EzyejoKObPV8/xXFJSgpqaGlRXV0v/WyyzLxGnxPL5fOjq6kJXVxfa29vx4Ycfor29HT6fOql75ZVX8MMf/jAFtaTpwOfzRfwHAJcuXZLiSev9k/Wzn/0M//RP/5SQ70CzC5PuOWZ4eBg+nw99fX2Kf7E8Nzw8POlyMzIyJp2wm0z63JyFkufLL7/E6dOncfr0aZw6dQqnT5/W3Kk5HA5VIp6dzZ6Tucrn86G9vR3t7e24dOkSPvjgA3R1dWnGjtlsRmVlJSorK1FaWooHH3wQdrsdZrNZY8k0E4jfWSTF4f9funRJeqyVME8lcRZxYzabYTabYbfbFY9LS0ulx/I4k7+PKByTbopZIBCIOUEPf25wMPqt4aOZN29ezAm61nM0PZ07d06ViPv96hs/rFy5EjU1NVISXl1djYyMDI0l0kzW3t6u6L0WCXc4keTY7XasWrUKDz74oJRw0/QjT4TDe5RF0ixekyfLU+1tBu4kyFr/AKC0tFQzoZa/hyiRmHRTUty6dWvSCfvAwOTn8k5LS4srYQ9//q675swEP9NCe3u7Igk/ffo0vvnmG9X7wnvDq6qqNJZG05FIsD744IOYeq/tdjsefPBB9l6nSHgCLO9VBu4M0Yg2jGOywnuPw/8Xvc0iJsITZsYJTTdMumnaCwaDcQ2DkT+XiEY/3qRdvJaePifuPaWrYDCoSsI7OjpU78vMzFQl4vfdd18Kakxy8uEhH374oTQWO1KCLZLqBx54QOrNZuI0NZMZoiF/PZG9zbEO0WBvM81WTLppVvvmm2/iHrsuf24qm0dubm5cw2Dk/zh8IrKhoSFVIv7FF1+o3mcymRRJeHV1Ne69994U1Hj2i+fiRq3hIZWVlUywoojWk+zz+dDf35+UIRqAslcZuDNEI9owDiIKYdJNFMVUEvaxsbFJl5udnR3XMBj5v8zMzASugZmht7dXkYSfOnVK6sGTKygoUCTiNTU1WLx4cQpqPHPx4sb4zbQhGvLX59pvRaQnJt1EOunv75900j46OjrpchcsWBD32HXxz2g0JnANpNbXX3+tulDz2rVrqvcVFxcresNrampgtVpTUOPpR/RcT3RxIwBUVlbO2osbw3uPIw3RCO9t1mOIRvg/k8kUcfgGe5uJphcm3UTT0M2bNyedsI+MjEy6XIPBMKkLTvPy8pCVlZXANaCPr776SpWI9/X1qd5XVlamGiM+m+eaF8lie3s7zp49OysvboxniIbW+6eCQzSICGDSTTTrDA0NTWoe9r6+PgQCgUmXO3/+/LjGrctfT2VCe/78edUYca056VeuXKnoDa+urta86c90Jx8ecvbsWWmqvomGh6T64sbpMESDczYT0VQw6SYiyUy4eVL463rcPOns2bOqRFxrjH54Er569eqE12WytC5uFI/DJePixkhDNCaas5lDNIhotmDSTUQJEQgEJp2wT/XmSRNN3xjttViMjY2pkvCzZ8+q3peZmalKxFesWDHp7xarZF3cmOohGgDnbCaimYtJNxGl3HS8eVIss8SIBFwk5FpTF+bm5qqmLiwrK5t0neO5uNFut6OyslLqvZ43bx7Ky8t5W20iohRg0k1EM5q4eZJWcq71vPxxom+elJWVhWAwiKGhIfT29qK7uxter1f1ufz8fFUiXlxcrHiP1sWNX331Ffr7+1XLEzPWmEwm5Ofnw2Qyobe3VzqDoMcFgRyiQUQUHybdRDRnyW+eNJle9kQ2n0ajEQUFBcjKysK1a9cwMDCAYDCYsOUDHKJBRJRKTLqJiCZJj5snpaWlRU3m5Ykwb6tNRDRzMOkmoqh8/iB+c/IaGj/1wucPoqs3AJ8/sT2wc9LIEDByEwjcBEYGAe9XwK1BwHsJWFgCmBYD2VYgM1v5j6bEvtCAysXZWHV3Fp58wAazMT3VVSKiOYJJNxFp8vmD+Od3LuE3J68xyaZZ68kHbHjxsXtTXQ0imgOYdBORSvvVQWw98hm6eid/sxyimcK+0IBju1agcjHPJBCRfph0E5FC+9VBbPjVWfZu05xiNqbj+P+5iok3EenmrlRXgIimD58/iB8d/YIJN805Pn+QB5tEpCsm3UQk+eWHbrRfnfzdIYlmMp8/iJ/8/i+prgYRzVJMuokIQCjhOHDiaqqrQZRSvzl5jdcyEJEumHQTEQBwlhKi237f6Ul1FYhoFmLSTUQAgA//or69OE1O4+6VGH/xAVx4ek1Clnfh6TUYf/EBNKxfnJDlUXTcFohID0y6iQgAOJab6LYPLvpSXQUimoWYdBMRAHBoCdFt3BaISA+8/y0RAWCiMZ0t/fnJVFeBiIimiD3dREREREQ6Y083EVGSNaxfjN3fKUKZ1YgF80N9H64bfrxzvhf7fndR9f4LT6+BI9+I/ccu4uDtaR0b1i/Gga1lcN3w47v/2oGXn1iKysXZsGRlAAA6vh7Cy3/qlt5PRESpxaSbiCiJ3v0/KrBpaR4AYPjWN3Dd8MOYcRcc+UY48hfjsXIr6g6241JfbHNFGzPuQktDJWzmTLh9I3Dd8GOxKRMVd2fhwNYyWLMy8OzbXXp+JSIiigGHlxARJcmrO5dJCfe/nepB1v/VjKU/P4nif27D/mMXMXzrG9jMmWj631bGvEybORMLF2Tgid9+juJ/bsPSn5/Eff/3n9Hx9RAAYM+6u3X5LkREFB8m3URESfLo8oUAgKZPvfjBa+cVrx08cRX/8D+/BABU3J2F7VX5MS/3H/7nl3jjzA3p8aW+AH7+7iUAgCUrA857TFOtOhERTRGTbiKiJGhYv1gab/3C8Sua7zl44ircvhEAwN+sLox52VrjtuVJeJUtO56qEhGRDph0ExElgcNqBBAax938ZeQ7Hn5xfRgAsLxwQUzLFUk6ERFNb0y6iYiSoCTPAAC42h89SR669U1cy/WPxvd+IiJKDSbdRESTcOHpNRj6r86Yx15fvj0byWJTZtT3Zc1ns0xENBuxdScimgRHfmiO7cKc+arXCnIyVM+5PH4AwIL5d0W9sPFbBaFhJed6hhNUUyIimg6YdBMRTYIYS12/wqJ6zXa7N/uybK7tgyeuwjs0CgB4akOx5jIb1i+GzRz67P/7SU9C60tERKnFpJuIaBI+cQ8CANbaTTj0vTIAQGmeAa1PVkmJc9NnXsVn3j7XCwCoX2nBqzuXKV5rWL8Y/+V/uQdA6O6U8tlHiIho5uMdKYmIJqHhdxex2pYNmzkTe52Lsde5WPF626UB1VR+P3jtPIpy52PT0jx8v6YQ36vIx9X+ERgz7pISdbdvBN/9146kfQ8iIkoO9nQTEU3Cpb4A6g62o+lTrzRsBAj1Uh9uvoq1vzyj+bmH/rUD+49dlO4Y6cg3wmbOlD5X/M9tMd8CnoiIZo608fHx8VRXgohSL+0nH6a6CkTTxviLD6S6CkQ0y7Cnm4iIiIhIZ0y6iYiIiIh0xqSbiIiIiEhnTLqJiIiIiHTGpJuIiIiISGdMuomIiIiIdMakm4iIiIhIZ0y6iYiIiIh0xqSbiIiIiEhnTLqJiIiIiHTGpJuIiIiISGdMuomIiIiIdMakm4iIiIhIZ0y6iYiIiIh0xqSbiIiIiEhnTLqJiIiIiHTGpJuIiIiISGdMuomIiIiIdMakm4iIiIhIZ0y6iYjCOO8xYfzFB3Dh6TWprsqkie/gvMeU6qoQERGYdBMRqTy1oRiuG3448o1oWL841dUhIqJZID3VFSAimm7WLcnF0U+uA1iIHasLcPDEVcXrF55eA0e+EQDQ9KkX9SstWH+oHc1f9qNh/WIc2FoGAPAOjcLl8QMA1v7yDBp3r0RBTgZqS3MBAPuPXcTBE1cVy/MOjcL6jx9LZTXuXon6lRYAQNulATisRhz95Dr2/e4iAGD8xQcUdWv61IsXjl/BiX2VAIAT+ypxuPkq9v3uoqJuAKTnAcDzL/fD5fGjtjRXVQciIpo69nQTEckc+l4oKd33u4t453yvlCALrU9WYeGCdKT95EOk/eRDrFty53XnPSYc2FqGw81XkfaTD3H0k+uqz9eW5mL/sYtI+8mHUsLtHR6VlvfRVwPw/Mv9Ul1EQp/2kw8BAJasDGlZnn+5H02feqXPigMAAFh/qF36X55wi7L3H7uIvc7Fip58h9WItJ98yISbiEgHTLqJiGQeWbYQH301AABSL7BIxIFQ0vzcHy5Jj+V/i2Ep4nP7fncRrht+xfK9Q6NSz7nzHhMc+Uas/eUZ6fUtL38KS1YGGtYvxiPLFqLpUy+av+wHAMX7AMD6jx9jy8ufSo/fc/VF/F47Vheg7dKAVPbBE1fRdmkAe+vuJN3iexMRUeJxeAkR0W0iCd79+hfSc22XBvDIsoXS6wBwxj0ovS7/uyAnA97hUcUywx/3Dgelvx+vzAegHiIChHqdFy5Ix+W+gHJ5Q6Oq98qHp0RiWZCBcz3DiudOXb6JHasLpMfhZRERUeIw6SYiuu2pDcUAII2HlmtYv1iRYCdKtPHT8oRYi0i2XTf8SPvJh6ox20RENH0w6SYium3dklzFxYWC51/uV1xQWWXLloZ8VNmypfddvzmK5YULFJ+1LFD3fgsujx+WrAw47zFJy5PrHQ6iJM+gXN7tMd2iV15cwDkR7/AoCnIyFM/VlOQoet6JiEg/HNNNRAAAs3FuH4Mf+l4ZLFkZqoQbCI11FhdEtl0awLMPl0qvyf9+4fgVOPKN0hjwQ98rizrs4+CJq3Dd8OPYrhXScw3rF2P8xQfQsH4x3jnfi/qVFmlYS+uTVaplyJP+aL3c4qJOceFkw/rFqC3NxeGWqxE/Q0REiTO397JEJDEb0+Hzz91ez0eWLUTbJe0LCV84fgX1Ky1o3L0Sa395BheeXiONw5bPGNL8ZT/2H7uIA1vLsNe5GN6h0YjLFJb+/KRieQAUvdcleQZpuEvbpQFpTHfzl/043HwVB7aWScn2+kPtOLGvEo9X5ksXccqnDASgeL+YspCU5voBKBHpI218fHw81ZUgotTb8Kuz+OCiL9XVmHHEOGoxpV+4C0+vwbmeYcUsI1Mx/uIDTJZ1Vrk4G2eeqk51NYholuHwEiICAGy53VtL0Y2/+AAad6+UHu9YXSBNC9i4e6Wix1qMu442lV80F55eo7gVvRi2woRbX9wWiEgP7OkmIgCAzx9E3tMfpboa0174DCGuG34s/flJ6XH49H1T7ZUOn04wUo86Jc5Xz3wH9oWGid9IRBQHJt1EJPnR0S/wm5PXUl0NopR58gEbXnzs3lRXg4hmIQ4vISLJi4/dyx4+mrPsCw342SOlE7+RiGgSmHQTkcRsTFdMX0c0V5iN6XjxsXs5cwkR6YZJNxEpiJkb2ONNc4XZmI5XdnwLj5VbU10VIprFOKabiCLiGG+azczGdDxWbsXPHinlQSYR6Y5JNxFF1dUbwO87PWj81Mt5vGnGMxvTUbk4Gw/ca8Jj5VZULs6e+ENERAnApJuIaJpIS0sDALBZJiKafTimm4iIiIhIZ0y6iYiIiIh0xqSbiIiIiEhnTLqJiIiIiHTGpJuIiIiISGdMuomIiIiIdMakm4iIiIhIZ0y6iYiIiIh0xqSbiIiIiEhnTLqJiIiIiHTGpJuIiIiISGdMuomIiIiIdMakm4iIiIhIZ0y6iYiIiIh0ljY+Pj6e6koQ0fTl8wfxm5PX0PipFz5/EF29Afj8wf+/vbuLrbO+7wD+NYohzquxk2xgg0OIO6YG6oQqC7A4QpOWSZVCQqd2uVvJxS5GDJaiXUTVuk6olSamvMHd2nFHJ00JydWYVFE7pURoIynNBMTmxQUzIHFIUmwznOFdhPPgE+cFSJ4dx/58bnzO83Z+5+JYX//8e/6n1mVNT4f/9dzPlX9e2zqmsaVNs9PRMi/fuHluHl3XmsaGWbUuCZghhG7ggk6Nns0Pnx3IUy++J2QzbT26rjU7Nt5e6zKAGUDoBiY5MvhRNv30v/LWyY9rXQqUbmnT7Ox76OvpaJlX61KAaUzoBqocGfwo9z/5a91tZpTGhll57q+/wQDeQwAACcNJREFUIXgDpXEjJVA4NXo233v6NYGbGefU6Fl/bAKlErqBws6ed3Jk8KNalwE1cWr0bLqfeb3WZQDTlNANJDkXOHb1Dta6DKipp158z70MQCmEbiBJrFICn3nmNydqXQIwDQndQJKk5/XTtS4BpgSfBaAMvhUASBKz3F/R+I51X/qcuu6eEiqpdmz76rQvbsgj+/qz29jQl/KL/lO1LgGYhnS6gSQxWgKf8VkAyqDTDSQRNK6UjjIAl6LTDQAAJRO6AQCgZMZLAGpo4g2Pi+bW54EVi3LXzXOTJEPDY3n+zTPp2tufgQ8nrx29dtnC/MOGZbnrpnmZc/11Gfnk07z83x/lbw688f/9NgC4DKEbYArYvGpJ1rQtyMgnn6bv+Gga6q9La+MN2bCiOata5+WWHx6qOv67Kxfnp39xR+Zcf+4flpVz1rQtyL/91V0ZHfvfWrwNAC5C6AaYAta0LcihgTO5Z+fhYltXZ0t2bVqe1sYbsufB5dm6tz9J0nbj7Dz57fbMuf66vPzucDb809GiE97V2ZIff2tZmufW1+R9AHBhQjfAVbBr0/Ls2rT8ssddbJWTvuOjVYE7SXb3DmbLH92Uu26em2/eOr/Yvu3+1jTPrc/IJ59WBe7KOZV6AJg63EgJMAW88v7IBbe/dfJcoG6e83nnuvP2xiTJC2+dvuCs9+7ewQwNj5VQJQBflU43wFVwpet0//rdL/6NoA315/olw598etFjTo6cNWICMIXodANMASe+RGe6fXFDkuTnfR+WVQ4AV5nQDXCN6Ts+miT5k/Yba1wJAF+U0A1wjRkdOzdWsmT+xcdHmuaYHgSYSoRugGtM7+unkiR33TQvbTfOnrS/q7PFPDfAFCN0A1xjtu7tzzun/idzrr8uv+zqyNplC4t93125OD/+1rIaVgfAhfj/I8BV8EXX6U6ufKWTJNl24PU8+e32tDbekN6tHVXfYjnyyacZGh7T7QaYQnS6Aa5B/3L4eO7+x5dy4OhQhobH0r64Ia2NN+Tld4fz0M9ezcmRs7UuEYAJ6sbHx8drXQRQe3XdPbUuAaaM8R3ral0CMM3odAMAQMmEbgAAKJnQDQAAJRO6AQCgZEI3AACUTOgGAICSCd0AAFAyoRsAAEomdAMAQMmEbgAAKJnQDQAAJRO6AQCgZEI3AACUTOgGAICSCd0AAFAyoRsAAEomdAMAQMmEbgAAKJnQDQAAJRO6Ac6zdtnCjO9Yl2PbV9e6lK+s8h7WLltY61IAiNANMMm2+29J3/HRtC9uSFdnS63LAWAamFXrAgCmmvtuW5CnX/ogSVM2r1qS3b2DVfuPbV+d9sUNSZIDR4eyYUVzOvccycE3TqersyW7Ni1PkgwNj6XvxGiS5J6dh7N/y4osmV+fNW0LkiSP7OvP7t7BqusNDY9l0fd/VbzW/i0rsmFFc5Lk0MCZtC9qyNMvfZCte/uTJOM71lXVduDoUB5/7u30bu1IkvRu7cgTBwezdW9/VW1Jiu1JcuKxe9N3YjRr2hZMqgGAK6fTDTDBngfPhdKte/vz7Ksni4Bc8cKjK9M0Z1bquntS192T+277fP/aZQuza9PyPHFwMHXdPXn6pQ8mnb+mbUEe2defuu6eInAPjYwV13v+zTM58di9RS2VQF/X3ZMkaZ5bX1zrxGP35sDRoeLcyh8ASdK550jxc2Lgrrz2I/v68/DalqpOfvuihtR19wjcACUQugEmWH9HU55/80ySFF3gShBPzoXmv//3geL5xMeVsZTKeVv39qfv+GjV9YeGx4rO+dplC9O+uCH37Dxc7H/gJ0fTPLc+XZ0tWX9HUw4cHcrBN04nSdVxSbLo+7/KAz85Wjz/ed+HF31fm1ctyaGBM8Vr7+4dzKGBM3n4jz8P3ZX3DcDVZ7wE4DOVELzlZ68V2w4NnMn6O5qK/Uly+J2Piv0THy+ZX5+hkbGqa57//OTI2eLxdzoWJ5k8IpKc6zo3zZmV3374cfX1hscmHTtxPOVimufU55X3R6q2/cdvf5fNq5YUz89/LQCuHqEb4DPb7r8lSYp56Im6OluqAvbVcqn56YmB+EIqYbvv+GjqunsmzWwDMHUI3UCSpLFhVk6Nnr38gdPYfbctqLq5sOLEY/dW3VC5snVeMfKxsnVecdwHvxvLH/7enKpzm+dM7n5X9J0YTfPc+qxdtrC43kQnR87m1htnV1/vs5nuSle+cgPn5QyNjGXJ/Pqqbd+8dX5V5x2A8pjpBpKcC90z2Z4Hl6d5bv2kwJ2cm3Wu3BB5aOBM/vZP24p9Ex8//tzbaV/cUMyA73lw+SXHPnb3Dqbv+Gj2PfT1YltXZ0vGd6xLV2dLnn31ZDasaC7GWl54dOWka0wM/Zfqcldu6qzcONnV2ZI1bQvyxC8HL3rOTDXTPwtAOfxmAZIkS5tm562TM3emd/0dTTk0cOEbCR9/7u1sWNGc/VtW5J6dh3Ns++piDnviiiEH3zidR/b1Z9em5Xl4bUuGhscues2Kr/3oxarrJanqXt964+xi3OXQwJlipvvgG6fzxMHB7Nq0vAjbnXuOpHdrR77Tsbi4iXPikoFJqo6vLFlItaVNsy9/EMCXVDc+Pj5e6yKA2tvZ8066n3m91mVccypz1JUl/c53bPvqvPL+SNUqI1difMc6YblkP1jflr/7s6W1LgOYZoyXAEmSv1z9+7Uu4ZowvmNd9m9ZUTzfvGpJsSzg/i0rqjrWlbnrSy3ldynHtq+u+ir6ytiKwF0unwWgDDrdQOF7T7+Wp158r9ZlTGnnrxDSd3w0X/vRi8Xz85fvu9Ku9PnLCV6so87V8ei61uzYeHutywCmIaEbKJwaPZuVj//njJ7tZuZa2jQ7h7fd7UZKoBTGS4BCY8OsqpU0YKZobJiVHRtvF7iB0gjdQJWOlnk5vO1uKzgwYzQ2zMo/b/6DbLxzUa1LAaYx4yXARZnxZjprbJiVjXcuyg/Wt/kjEyid0A1c0lsnP84zvzmR/UeH8ov+U7UuB65IY8OsdLTMy7rbF2bjnYvS0TLv8icBXAVCNwAAlMxMNwAAlEzoBgCAkgndAABQMqEbAABKJnQDAEDJhG4AACiZ0A0AACUTugEAoGRCNwAAlEzoBgCAkgndAABQMqEbAABKJnQDAEDJhG4AACiZ0A0AACUTugEAoGRCNwAAlEzoBgCAkgndAABQMqEbAABKJnQDAEDJhG4AACiZ0A0AACUTugEAoGRCNwAAlEzoBgCAkgndAABQMqEbAABKJnQDAEDJhG4AACiZ0A0AACUTugEAoGRCNwAAlEzoBgCAkgndAABQMqEbAABKJnQDAEDJhG4AACjZ/wG/aKvqTLZkfAAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "id": "8e406db6", + "metadata": { + "scrolled": true + }, + "source": [ + "Now we come to the flow definition. The OpenFL Workflow Interface adopts the conventions set by Metaflow, that every workflow begins with `start` and concludes with the `end` task. The aggregator begins with an optionally passed in model and optimizer. The aggregator begins the flow with the `start` task, where the list of collaborators is extracted from the runtime (`self.collaborators = self.runtime.collaborators`) and is then used as the list of participants to run the task listed in `self.next`, `aggregated_model_validation`. The model, optimizer, and anything that is not explicitly excluded from the next function will be passed from the `start` function on the aggregator to the `aggregated_model_validation` task on the collaborator. Where the tasks run is determined by the placement decorator that precedes each task definition (`@aggregator` or `@collaborator`). Once each of the collaborators (defined in the runtime) complete the `aggregated_model_validation` task, they pass their current state onto the `train` task, from `train` to `local_model_validation`, and then finally to `join` at the aggregator. It is in `join` that an average is taken of the model weights, and the next round can begin.\n", + "\n", + "![image.png](attachment:image.png)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c3f0ae2d-452b-43c8-a6d8-eb40a77cf247", + "metadata": {}, + "outputs": [], + "source": [ + "# Generate model and optimizer to move to 'xpu'\n", + "model = Net()\n", + "optimizer = optim.SGD(model.parameters(), lr=learning_rate,\n", + " momentum=momentum)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b2cb3a38-bf3a-48ae-86eb-b53f75d372a4", + "metadata": {}, + "outputs": [], + "source": [ + "############# code changes ###############\n", + "import intel_extension_for_pytorch as ipex\n", + "model.to(device)\n", + "model, optimizer = ipex.optimize(model, optimizer=optimizer)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "difficult-madrid", + "metadata": {}, + "outputs": [], + "source": [ + "class FederatedFlow(FLSpec):\n", + "\n", + " def __init__(self, model = None, optimizer = None, rounds=3, **kwargs):\n", + " super().__init__(**kwargs)\n", + " self.model = model\n", + " self.optimizer = optimizer\n", + " self.rounds = rounds\n", + "\n", + " @aggregator\n", + " def start(self):\n", + " print(f'Performing initialization for model')\n", + " self.collaborators = self.runtime.collaborators\n", + " self.private = 10\n", + " self.current_round = 0\n", + " self.next(self.aggregated_model_validation,foreach='collaborators',exclude=['private'])\n", + "\n", + " @collaborator\n", + " def aggregated_model_validation(self):\n", + " print(f'Performing aggregated model validation for collaborator {self.input}')\n", + " self.agg_validation_score = inference(self.model,self.test_loader)\n", + " print(f'{self.input} value of {self.agg_validation_score}')\n", + " self.next(self.train)\n", + "\n", + " @collaborator\n", + " def train(self):\n", + " self.model.train()\n", + " self.optimizer = optim.SGD(self.model.parameters(), lr=learning_rate,\n", + " momentum=momentum)\n", + " train_losses = []\n", + " for batch_idx, (data, target) in enumerate(self.train_loader):\n", + " ############# code changes ###############\n", + " data, target = data.to(device), target.to(device)\n", + " self.optimizer.zero_grad()\n", + " ############# code changes ###############\n", + " with torch.xpu.amp.autocast(enabled=True, dtype=torch.bfloat16):\n", + " output = self.model(data)\n", + " loss = F.nll_loss(output, target)\n", + " loss.backward()\n", + " self.optimizer.step()\n", + " if batch_idx % log_interval == 0:\n", + " print('Train Epoch: 1 [{}/{} ({:.0f}%)]\\tLoss: {:.6f}'.format(\n", + " batch_idx * len(data), len(self.train_loader.dataset),\n", + " 100. * batch_idx / len(self.train_loader), loss.item()))\n", + " self.loss = loss.item()\n", + " torch.save(self.model.state_dict(), 'model.pth')\n", + " torch.save(self.optimizer.state_dict(), 'optimizer.pth')\n", + " self.training_completed = True\n", + " self.next(self.local_model_validation)\n", + "\n", + " @collaborator\n", + " def local_model_validation(self):\n", + " self.local_validation_score = inference(self.model,self.test_loader)\n", + " print(f'Doing local model validation for collaborator {self.input}: {self.local_validation_score}')\n", + " self.next(self.join, exclude=['training_completed'])\n", + "\n", + " @aggregator\n", + " def join(self,inputs):\n", + " self.average_loss = sum(input.loss for input in inputs)/len(inputs)\n", + " self.aggregated_model_accuracy = sum(input.agg_validation_score for input in inputs)/len(inputs)\n", + " self.local_model_accuracy = sum(input.local_validation_score for input in inputs)/len(inputs)\n", + " print(f'Average aggregated model validation values = {self.aggregated_model_accuracy}')\n", + " print(f'Average training loss = {self.average_loss}')\n", + " print(f'Average local model validation values = {self.local_model_accuracy}')\n", + " self.model = FedAvg([input.model for input in inputs])\n", + " self.optimizer = [input.optimizer for input in inputs][0]\n", + " self.current_round += 1\n", + " if self.current_round < self.rounds:\n", + " self.next(self.aggregated_model_validation, foreach='collaborators', exclude=['private'])\n", + " else:\n", + " self.next(self.end)\n", + " \n", + " @aggregator\n", + " def end(self):\n", + " print(f'This is the end of the flow') " + ] + }, + { + "cell_type": "markdown", + "id": "2aabf61e", + "metadata": {}, + "source": [ + "You'll notice in the `FederatedFlow` definition above that there were certain attributes that the flow was not initialized with, namely the `train_loader` and `test_loader` for each of the collaborators. These are **private_attributes** that are exposed only throught he runtime. Each participant has it's own set of private attributes: a dictionary where the key is the attribute name, and the value is the object that will be made accessible through that participant's task. \n", + "\n", + "Below, we segment shards of the MNIST dataset for **four collaborators**: Portland, Seattle, Chandler, and Portland. Each has their own slice of the dataset that's accessible via the `train_loader` or `test_loader` attribute. Note that the private attributes are flexible, and you can choose to pass in a completely different type of object to any of the collaborators or aggregator (with an arbitrary name). These private attributes will always be filtered out of the current state when transfering from collaborator to aggregator, or vice versa. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "57735fe4-fe52-410f-ad91-5993688c003e", + "metadata": {}, + "outputs": [], + "source": [ + "# Setup participants\n", + "aggregator = Aggregator()\n", + "aggregator.private_attributes = {}\n", + "\n", + "# Setup collaborators with private attributes\n", + "collaborator_names = ['Portland', 'Seattle', 'Chandler','Bangalore']\n", + "collaborators = [Collaborator(name=name) for name in collaborator_names]\n", + "\n", + "for idx, collaborator in enumerate(collaborators):\n", + " local_train = deepcopy(mnist_train)\n", + " local_test = deepcopy(mnist_test)\n", + " ############# code changes ###############\n", + " local_train.data = mnist_train.data[idx::len(collaborators)].to(device)\n", + " local_train.targets = mnist_train.targets[idx::len(collaborators)].to(device)\n", + " local_test.data = mnist_test.data[idx::len(collaborators)].to(device)\n", + " local_test.targets = mnist_test.targets[idx::len(collaborators)].to(device)\n", + " collaborator.private_attributes = {\n", + " 'train_loader': torch.utils.data.DataLoader(local_train,batch_size=batch_size_train, shuffle=True),\n", + " 'test_loader': torch.utils.data.DataLoader(local_test,batch_size=batch_size_train, shuffle=True)\n", + " }\n", + "\n", + "local_runtime = LocalRuntime(aggregator=aggregator, collaborators=collaborators, backend='single_process')\n", + "print(f'Local runtime collaborators = {local_runtime.collaborators}')" + ] + }, + { + "cell_type": "markdown", + "id": "278ad46b", + "metadata": {}, + "source": [ + "Now that we have our flow and runtime defined, let's run the experiment! " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7b59ee74-0576-4b71-a452-609dfcb9eedc", + "metadata": {}, + "outputs": [], + "source": [ + "best_model = None\n", + "flflow = FederatedFlow(model,optimizer)\n", + "flflow.runtime = local_runtime\n", + "flflow.run()" + ] + }, + { + "cell_type": "markdown", + "id": "c32e0844", + "metadata": {}, + "source": [ + "Now that the flow has completed, let's get the final model and accuracy:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "863761fe", + "metadata": {}, + "outputs": [], + "source": [ + "print(f'Sample of the final model weights: {flflow.model.state_dict()[\"conv1.weight\"][0]}')\n", + "\n", + "print(f'\\nFinal aggregated model accuracy for {flflow.rounds} rounds of training: {flflow.aggregated_model_accuracy}')" + ] + }, + { + "cell_type": "markdown", + "id": "5dd1558c", + "metadata": {}, + "source": [ + "We can get the final model, and all other aggregator attributes after the flow completes. But what if there's an intermediate model task and its specific output that we want to look at in detail? This is where **checkpointing** and reuse of Metaflow tooling come in handy.\n", + "\n", + "Let's make a tweak to the flow object, and run the experiment one more time (we can even use our previous model / optimizer as a base for the experiment)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "443b06e2", + "metadata": {}, + "outputs": [], + "source": [ + "flflow2 = FederatedFlow(model=flflow.model,optimizer=flflow.optimizer,checkpoint=True)\n", + "flflow2.runtime = local_runtime\n", + "flflow2.run()" + ] + }, + { + "cell_type": "markdown", + "id": "a61a876d", + "metadata": {}, + "source": [ + "Now that the flow is complete, let's dig into some of the information captured along the way" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "verified-favor", + "metadata": {}, + "outputs": [], + "source": [ + "run_id = flflow2._run_id" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "composed-burst", + "metadata": {}, + "outputs": [], + "source": [ + "import metaflow" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "statutory-prime", + "metadata": {}, + "outputs": [], + "source": [ + "from metaflow import Metaflow, Flow, Task, Step" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "fifty-tamil", + "metadata": {}, + "outputs": [], + "source": [ + "m = Metaflow()\n", + "list(m)" + ] + }, + { + "cell_type": "markdown", + "id": "b55ccb19", + "metadata": {}, + "source": [ + "For existing users of Metaflow, you'll notice this is the same way you would examine a flow after completion. Let's look at the latest run that generated some results:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "grand-defendant", + "metadata": {}, + "outputs": [], + "source": [ + "f = Flow('FederatedFlow').latest_run" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "incident-novelty", + "metadata": {}, + "outputs": [], + "source": [ + "f" + ] + }, + { + "cell_type": "markdown", + "id": "e5efa1ff", + "metadata": {}, + "source": [ + "And its list of steps" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "increasing-dressing", + "metadata": {}, + "outputs": [], + "source": [ + "list(f)" + ] + }, + { + "cell_type": "markdown", + "id": "3292b2e0", + "metadata": {}, + "source": [ + "This matches the list of steps executed in the flow, so far so good..." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "olympic-latter", + "metadata": {}, + "outputs": [], + "source": [ + "s = Step(f'FederatedFlow/{run_id}/train')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "awful-posting", + "metadata": {}, + "outputs": [], + "source": [ + "s" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "median-double", + "metadata": {}, + "outputs": [], + "source": [ + "list(s)" + ] + }, + { + "cell_type": "markdown", + "id": "eb1866b7", + "metadata": {}, + "source": [ + "Now we see **12** steps: **4** collaborators each performed **3** rounds of model training " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "adult-maldives", + "metadata": {}, + "outputs": [], + "source": [ + "t = Task(f'FederatedFlow/{run_id}/train/9')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "changed-hungarian", + "metadata": {}, + "outputs": [], + "source": [ + "t" + ] + }, + { + "cell_type": "markdown", + "id": "ef877a50", + "metadata": {}, + "source": [ + "Now let's look at the data artifacts this task generated" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "academic-hierarchy", + "metadata": {}, + "outputs": [], + "source": [ + "t.data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "thermal-torture", + "metadata": {}, + "outputs": [], + "source": [ + "t.data.input" + ] + }, + { + "cell_type": "markdown", + "id": "9826c45f", + "metadata": {}, + "source": [ + "Now let's look at its log output (stdout)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "auburn-working", + "metadata": {}, + "outputs": [], + "source": [ + "print(t.stdout)" + ] + }, + { + "cell_type": "markdown", + "id": "dd962ddc", + "metadata": {}, + "source": [ + "And any error logs? (stderr)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f439dff8", + "metadata": {}, + "outputs": [], + "source": [ + "print(t.stderr)" + ] + }, + { + "cell_type": "markdown", + "id": "426f2395", + "metadata": {}, + "source": [ + "# Congratulations!\n", + "Now that you've completed your first workflow interface quickstart notebook, see some of the more advanced things you can do in our [other tutorials](broken_link), including:\n", + "\n", + "- Using the LocalRuntime Ray Backend for dedicated GPU access\n", + "- Vertical Federated Learning\n", + "- Model Watermarking\n", + "- Differential Privacy\n", + "- And More!" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "open_fl", + "language": "python", + "name": "open_fl" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.18" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From 543be46c1c92622d8940820ce95d9148c9237384 Mon Sep 17 00:00:00 2001 From: Manuel Santana <109173083+manuelhsantana@users.noreply.github.com> Date: Fri, 29 Dec 2023 15:59:22 -0600 Subject: [PATCH 2/7] Added XPU example for non-federated_case This commit introduces an example of using an XPU with the non-federated_case. --- .../workspace/non-federated_case_XPU.ipynb | 357 ++++++++++++++++++ 1 file changed, 357 insertions(+) create mode 100644 openfl-tutorials/interactive_api/PyTorch_TinyImageNet/workspace/non-federated_case_XPU.ipynb diff --git a/openfl-tutorials/interactive_api/PyTorch_TinyImageNet/workspace/non-federated_case_XPU.ipynb b/openfl-tutorials/interactive_api/PyTorch_TinyImageNet/workspace/non-federated_case_XPU.ipynb new file mode 100644 index 0000000000..9bd116eece --- /dev/null +++ b/openfl-tutorials/interactive_api/PyTorch_TinyImageNet/workspace/non-federated_case_XPU.ipynb @@ -0,0 +1,357 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "4d452110-525d-47d8-b9fc-f3173cfd2733", + "metadata": {}, + "source": [ + "## Vanilla PyTorch training on TinyImageNet dataset (XPU version)" + ] + }, + { + "cell_type": "markdown", + "id": "a20dc008-7c65-4ab4-9fb4-39605bb5599d", + "metadata": {}, + "source": [ + "This notebook is intended to show that fixing random seeds leads to the same result in both federated and non-federated cases. \n", + "\n", + "Also, as a simple example for use Intel® Extension for PyTorch* with the latest performance optimizations for Intel hardware. Intel® Extension for PyTorch* provides easy GPU acceleration for Intel discrete GPUs through the PyTorch* xpu device.\r\n", + "\n", + "*Please refer to the [Installation Guide](https://intel.github.io/intel-extension-for-pytorch/xpu/2.1.10+xpu/tutorials/installation.html) for the system requirements and steps to install and use Intel® Extension for PyTorch*. For more detailed tutorials and documentations describing features, APIs and technical details, please refer to [Intel® Extension for PyTorch* Documentation](https://intel.github.io/intel-extension-for-pytorch/xpu/2.1.10+xpu/index.html). " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e2a00108-cdb0-47ff-8ed5-71d92bcc20be", + "metadata": {}, + "outputs": [], + "source": [ + "# Check Installation guide and Documentacion of IPEX for additional requiriments\n", + "!pip install -r requirements.txt" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "bb1add50-c2c9-4881-a4a7-9bff634d219f", + "metadata": {}, + "outputs": [], + "source": [ + "from pathlib import Path\n", + "import os\n", + "import shutil\n", + "from torch.utils.data import Dataset\n", + "from torch.utils.data import DataLoader\n", + "from torch import nn\n", + "from torch import optim\n", + "import torch.nn.functional as F\n", + "import torch\n", + "import torchvision.transforms as T\n", + "import torchvision\n", + "import glob\n", + "import tqdm\n", + "from PIL import Image\n", + "import numpy as np\n", + "\n", + "############# code changes ###############\n", + "device='xpu'" + ] + }, + { + "cell_type": "markdown", + "id": "9a365362-2224-41c8-b01d-c76229331d6f", + "metadata": {}, + "source": [ + "## Download data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "fcc1cb4e-baca-4380-9cb8-f9a96e985779", + "metadata": {}, + "outputs": [], + "source": [ + "common_data_folder = Path.cwd() / 'data'\n", + "zip_file_path = common_data_folder / 'tiny-imagenet-200.zip'\n", + "os.makedirs(common_data_folder, exist_ok=True)\n", + "os.system(f'wget --no-clobber http://cs231n.stanford.edu/tiny-imagenet-200.zip'\n", + " f' -O {zip_file_path}')\n", + "shutil.unpack_archive(str(zip_file_path), str(common_data_folder))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "fdd48081-0db6-467a-9b1d-b66aaf8bedbb", + "metadata": {}, + "outputs": [], + "source": [ + "class TinyImageNetDataset(Dataset):\n", + " \"\"\"TinyImageNet shard dataset class.\"\"\"\n", + "\n", + " NUM_IMAGES_PER_CLASS = 500\n", + "\n", + " def __init__(self, data_folder: Path, data_type='train', transform=None):\n", + " \"\"\"Initialize TinyImageNetDataset.\"\"\"\n", + " self.data_type = data_type\n", + " self._common_data_folder = data_folder\n", + " self._data_folder = os.path.join(data_folder, data_type)\n", + " self.labels = {} # fname - label number mapping\n", + " self.image_paths = sorted(\n", + " glob.iglob(\n", + " os.path.join(self._data_folder, '**', '*.JPEG'),\n", + " recursive=True\n", + " )\n", + " )\n", + " with open(os.path.join(self._common_data_folder, 'wnids.txt'), 'r') as fp:\n", + " self.label_texts = sorted([text.strip() for text in fp.readlines()])\n", + " self.label_text_to_number = {text: i for i, text in enumerate(self.label_texts)}\n", + " self.fill_labels()\n", + " self.transform = transform\n", + "\n", + " def __len__(self) -> int:\n", + " \"\"\"Return the len of the shard dataset.\"\"\"\n", + " return len(self.image_paths)\n", + "\n", + " def __getitem__(self, index: int):\n", + " \"\"\"Return an item by the index.\"\"\"\n", + " file_path = self.image_paths[index]\n", + " sample = self.read_image(file_path)\n", + " if self.transform:\n", + " sample = self.transform(sample)\n", + " label = self.labels[os.path.basename(file_path)]\n", + " return sample, label\n", + "\n", + " def read_image(self, path: Path):\n", + " \"\"\"Read the image.\"\"\"\n", + " img = Image.open(path)\n", + " return img\n", + "\n", + " def fill_labels(self) -> None:\n", + " \"\"\"Fill labels.\"\"\"\n", + " if self.data_type == 'train':\n", + " for label_text, i in self.label_text_to_number.items():\n", + " for cnt in range(self.NUM_IMAGES_PER_CLASS):\n", + " self.labels[f'{label_text}_{cnt}.JPEG'] = i\n", + " elif self.data_type == 'val':\n", + " with open(os.path.join(self._data_folder, 'val_annotations.txt'), 'r') as fp:\n", + " for line in fp.readlines():\n", + " terms = line.split('\\t')\n", + " file_name, label_text = terms[0], terms[1]\n", + " self.labels[file_name] = self.label_text_to_number[label_text]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5f08dbff-08e8-4ddc-86d9-6d20e510affd", + "metadata": {}, + "outputs": [], + "source": [ + "normalize = T.Normalize(\n", + " mean=[0.485, 0.456, 0.406],\n", + " std=[0.229, 0.224, 0.225]\n", + ")\n", + "\n", + "augmentation = T.RandomApply(\n", + " [T.RandomHorizontalFlip(),\n", + " T.RandomRotation(10),\n", + " T.RandomResizedCrop(64)], \n", + " p=.8\n", + ")\n", + "\n", + "training_transform = T.Compose(\n", + " [T.Lambda(lambda x: x.convert(\"RGB\")),\n", + " T.ToTensor(),\n", + " augmentation,\n", + " normalize]\n", + ")\n", + "\n", + "valid_transform = T.Compose(\n", + " [T.Lambda(lambda x: x.convert(\"RGB\")),\n", + " T.ToTensor(),\n", + " normalize]\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "edb570c5-cd8c-4aa3-be52-43b579ea13b8", + "metadata": {}, + "outputs": [], + "source": [ + "def get_train_loader():\n", + " generator=torch.Generator()\n", + " generator.manual_seed(0)\n", + " train_set = TinyImageNetDataset(common_data_folder / 'tiny-imagenet-200', transform=training_transform)\n", + " return DataLoader(train_set, batch_size=64, shuffle=True, generator=generator)\n", + "\n", + "def get_valid_loader():\n", + " valid_set = TinyImageNetDataset(common_data_folder / 'tiny-imagenet-200', data_type='val', transform=valid_transform)\n", + " return DataLoader(valid_set, batch_size=64)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4fd157ac-0f37-42a7-9f79-48e6b4e6b27e", + "metadata": {}, + "outputs": [], + "source": [ + "class Net(nn.Module):\n", + " def __init__(self):\n", + " torch.manual_seed(0)\n", + " super(Net, self).__init__()\n", + " self.model = torchvision.models.mobilenet_v2(pretrained=True)\n", + " # self.model.requires_grad_(False)\n", + " self.model.classifier[1] = torch.nn.Linear(in_features=1280, \\\n", + " out_features=200, bias=True)\n", + "\n", + " def forward(self, x):\n", + " x = self.model.forward(x)\n", + " return x\n", + "\n", + "model = Net()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "99377a32-9867-49d0-b17c-83f22ad88ecc", + "metadata": {}, + "outputs": [], + "source": [ + "optimizer = optim.Adam([x for x in model.parameters() if x.requires_grad], lr=1e-4)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c4aac8d0-1a12-40b1-a1e2-59cc82cea3f9", + "metadata": {}, + "outputs": [], + "source": [ + "loss_fn = F.cross_entropy" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4d4bb282-7231-47a1-9342-0d44e4f76d98", + "metadata": {}, + "outputs": [], + "source": [ + "############# code changes ###############\n", + "import intel_extension_for_pytorch as ipex\n", + "model.to(device)\n", + "model, optimizer = ipex.optimize(model, optimizer=optimizer, dtype=torch.bfloat16)\n", + "\n", + "def train(model, optimizer):\n", + " torch.manual_seed(0)\n", + " \n", + " data_loader = tqdm.tqdm(get_train_loader(), desc=\"train\")\n", + " model.train()\n", + " losses = []\n", + "\n", + " for data, target in data_loader:\n", + " ############# code changes ###############\n", + " data, target = data.to(device), target.to(device, dtype=torch.int64)\n", + " #data, target = torch.tensor(data).to(device), torch.tensor(\n", + " # target).to(device)\n", + " optimizer.zero_grad()\n", + " ############# code changes ###############\n", + " with torch.xpu.amp.autocast(enabled=True, dtype=torch.bfloat16):\n", + " output = model(data)\n", + " loss = loss_fn(output, target)\n", + " loss.backward()\n", + " optimizer.step()\n", + " losses.append(loss.detach().cpu().numpy())\n", + " \n", + " return {'train_loss': np.mean(losses),}\n", + "\n", + "def validate(model):\n", + " torch.manual_seed(0)\n", + " model.eval()\n", + " \n", + " data_loader = tqdm.tqdm(get_valid_loader(), desc=\"validate\")\n", + " val_score = 0\n", + " total_samples = 0\n", + "\n", + " with torch.no_grad():\n", + " for data, target in data_loader:\n", + " samples = target.shape[0]\n", + " total_samples += samples\n", + " ############# code changes ###############\n", + " data, target = data.to(device), target.to(device, dtype=torch.int64)\n", + " #data, target = torch.tensor(data).to(device), \\\n", + " # torch.tensor(target).to(device, dtype=torch.int64)\n", + " ############# code changes ###############\n", + " with torch.xpu.amp.autocast(enabled=True, dtype=torch.bfloat16):\n", + " output = model(data)\n", + " pred = output.argmax(dim=1,keepdim=True)\n", + " val_score += pred.eq(target).sum().cpu().numpy()\n", + " \n", + " return {'acc': val_score / total_samples,}" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0baeafef-212b-4ca8-8edc-baa4904d4b08", + "metadata": {}, + "outputs": [], + "source": [ + "for i in range(5):\n", + " if i == 0:\n", + " name, value = next(iter(validate(model).items())) \n", + " print(f'{name}: {value:f}')\n", + " \n", + " name, value = next(iter(train(model, optimizer).items()))\n", + " print(f'{name}: {value:f}')\n", + " \n", + " name, value = next(iter(validate(model).items())) \n", + " print(f'{name}: {value:f}')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ed198e40-453a-4a52-8905-665744750c7e", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b5fd54de-93d9-4440-b7f1-d20e22a4fc71", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "open_fl", + "language": "python", + "name": "open_fl" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.18" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From 9338cc8a8c27b0c3c6085954785774fa833ff28a Mon Sep 17 00:00:00 2001 From: manuelhsantana Date: Thu, 1 Feb 2024 18:03:56 -0800 Subject: [PATCH 3/7] Removed non-federated_case_XPU file --- .../workspace/non-federated_case_XPU.ipynb | 357 ------------------ 1 file changed, 357 deletions(-) delete mode 100644 openfl-tutorials/interactive_api/PyTorch_TinyImageNet/workspace/non-federated_case_XPU.ipynb diff --git a/openfl-tutorials/interactive_api/PyTorch_TinyImageNet/workspace/non-federated_case_XPU.ipynb b/openfl-tutorials/interactive_api/PyTorch_TinyImageNet/workspace/non-federated_case_XPU.ipynb deleted file mode 100644 index 9bd116eece..0000000000 --- a/openfl-tutorials/interactive_api/PyTorch_TinyImageNet/workspace/non-federated_case_XPU.ipynb +++ /dev/null @@ -1,357 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "4d452110-525d-47d8-b9fc-f3173cfd2733", - "metadata": {}, - "source": [ - "## Vanilla PyTorch training on TinyImageNet dataset (XPU version)" - ] - }, - { - "cell_type": "markdown", - "id": "a20dc008-7c65-4ab4-9fb4-39605bb5599d", - "metadata": {}, - "source": [ - "This notebook is intended to show that fixing random seeds leads to the same result in both federated and non-federated cases. \n", - "\n", - "Also, as a simple example for use Intel® Extension for PyTorch* with the latest performance optimizations for Intel hardware. Intel® Extension for PyTorch* provides easy GPU acceleration for Intel discrete GPUs through the PyTorch* xpu device.\r\n", - "\n", - "*Please refer to the [Installation Guide](https://intel.github.io/intel-extension-for-pytorch/xpu/2.1.10+xpu/tutorials/installation.html) for the system requirements and steps to install and use Intel® Extension for PyTorch*. For more detailed tutorials and documentations describing features, APIs and technical details, please refer to [Intel® Extension for PyTorch* Documentation](https://intel.github.io/intel-extension-for-pytorch/xpu/2.1.10+xpu/index.html). " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "e2a00108-cdb0-47ff-8ed5-71d92bcc20be", - "metadata": {}, - "outputs": [], - "source": [ - "# Check Installation guide and Documentacion of IPEX for additional requiriments\n", - "!pip install -r requirements.txt" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "bb1add50-c2c9-4881-a4a7-9bff634d219f", - "metadata": {}, - "outputs": [], - "source": [ - "from pathlib import Path\n", - "import os\n", - "import shutil\n", - "from torch.utils.data import Dataset\n", - "from torch.utils.data import DataLoader\n", - "from torch import nn\n", - "from torch import optim\n", - "import torch.nn.functional as F\n", - "import torch\n", - "import torchvision.transforms as T\n", - "import torchvision\n", - "import glob\n", - "import tqdm\n", - "from PIL import Image\n", - "import numpy as np\n", - "\n", - "############# code changes ###############\n", - "device='xpu'" - ] - }, - { - "cell_type": "markdown", - "id": "9a365362-2224-41c8-b01d-c76229331d6f", - "metadata": {}, - "source": [ - "## Download data" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "fcc1cb4e-baca-4380-9cb8-f9a96e985779", - "metadata": {}, - "outputs": [], - "source": [ - "common_data_folder = Path.cwd() / 'data'\n", - "zip_file_path = common_data_folder / 'tiny-imagenet-200.zip'\n", - "os.makedirs(common_data_folder, exist_ok=True)\n", - "os.system(f'wget --no-clobber http://cs231n.stanford.edu/tiny-imagenet-200.zip'\n", - " f' -O {zip_file_path}')\n", - "shutil.unpack_archive(str(zip_file_path), str(common_data_folder))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "fdd48081-0db6-467a-9b1d-b66aaf8bedbb", - "metadata": {}, - "outputs": [], - "source": [ - "class TinyImageNetDataset(Dataset):\n", - " \"\"\"TinyImageNet shard dataset class.\"\"\"\n", - "\n", - " NUM_IMAGES_PER_CLASS = 500\n", - "\n", - " def __init__(self, data_folder: Path, data_type='train', transform=None):\n", - " \"\"\"Initialize TinyImageNetDataset.\"\"\"\n", - " self.data_type = data_type\n", - " self._common_data_folder = data_folder\n", - " self._data_folder = os.path.join(data_folder, data_type)\n", - " self.labels = {} # fname - label number mapping\n", - " self.image_paths = sorted(\n", - " glob.iglob(\n", - " os.path.join(self._data_folder, '**', '*.JPEG'),\n", - " recursive=True\n", - " )\n", - " )\n", - " with open(os.path.join(self._common_data_folder, 'wnids.txt'), 'r') as fp:\n", - " self.label_texts = sorted([text.strip() for text in fp.readlines()])\n", - " self.label_text_to_number = {text: i for i, text in enumerate(self.label_texts)}\n", - " self.fill_labels()\n", - " self.transform = transform\n", - "\n", - " def __len__(self) -> int:\n", - " \"\"\"Return the len of the shard dataset.\"\"\"\n", - " return len(self.image_paths)\n", - "\n", - " def __getitem__(self, index: int):\n", - " \"\"\"Return an item by the index.\"\"\"\n", - " file_path = self.image_paths[index]\n", - " sample = self.read_image(file_path)\n", - " if self.transform:\n", - " sample = self.transform(sample)\n", - " label = self.labels[os.path.basename(file_path)]\n", - " return sample, label\n", - "\n", - " def read_image(self, path: Path):\n", - " \"\"\"Read the image.\"\"\"\n", - " img = Image.open(path)\n", - " return img\n", - "\n", - " def fill_labels(self) -> None:\n", - " \"\"\"Fill labels.\"\"\"\n", - " if self.data_type == 'train':\n", - " for label_text, i in self.label_text_to_number.items():\n", - " for cnt in range(self.NUM_IMAGES_PER_CLASS):\n", - " self.labels[f'{label_text}_{cnt}.JPEG'] = i\n", - " elif self.data_type == 'val':\n", - " with open(os.path.join(self._data_folder, 'val_annotations.txt'), 'r') as fp:\n", - " for line in fp.readlines():\n", - " terms = line.split('\\t')\n", - " file_name, label_text = terms[0], terms[1]\n", - " self.labels[file_name] = self.label_text_to_number[label_text]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "5f08dbff-08e8-4ddc-86d9-6d20e510affd", - "metadata": {}, - "outputs": [], - "source": [ - "normalize = T.Normalize(\n", - " mean=[0.485, 0.456, 0.406],\n", - " std=[0.229, 0.224, 0.225]\n", - ")\n", - "\n", - "augmentation = T.RandomApply(\n", - " [T.RandomHorizontalFlip(),\n", - " T.RandomRotation(10),\n", - " T.RandomResizedCrop(64)], \n", - " p=.8\n", - ")\n", - "\n", - "training_transform = T.Compose(\n", - " [T.Lambda(lambda x: x.convert(\"RGB\")),\n", - " T.ToTensor(),\n", - " augmentation,\n", - " normalize]\n", - ")\n", - "\n", - "valid_transform = T.Compose(\n", - " [T.Lambda(lambda x: x.convert(\"RGB\")),\n", - " T.ToTensor(),\n", - " normalize]\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "edb570c5-cd8c-4aa3-be52-43b579ea13b8", - "metadata": {}, - "outputs": [], - "source": [ - "def get_train_loader():\n", - " generator=torch.Generator()\n", - " generator.manual_seed(0)\n", - " train_set = TinyImageNetDataset(common_data_folder / 'tiny-imagenet-200', transform=training_transform)\n", - " return DataLoader(train_set, batch_size=64, shuffle=True, generator=generator)\n", - "\n", - "def get_valid_loader():\n", - " valid_set = TinyImageNetDataset(common_data_folder / 'tiny-imagenet-200', data_type='val', transform=valid_transform)\n", - " return DataLoader(valid_set, batch_size=64)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "4fd157ac-0f37-42a7-9f79-48e6b4e6b27e", - "metadata": {}, - "outputs": [], - "source": [ - "class Net(nn.Module):\n", - " def __init__(self):\n", - " torch.manual_seed(0)\n", - " super(Net, self).__init__()\n", - " self.model = torchvision.models.mobilenet_v2(pretrained=True)\n", - " # self.model.requires_grad_(False)\n", - " self.model.classifier[1] = torch.nn.Linear(in_features=1280, \\\n", - " out_features=200, bias=True)\n", - "\n", - " def forward(self, x):\n", - " x = self.model.forward(x)\n", - " return x\n", - "\n", - "model = Net()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "99377a32-9867-49d0-b17c-83f22ad88ecc", - "metadata": {}, - "outputs": [], - "source": [ - "optimizer = optim.Adam([x for x in model.parameters() if x.requires_grad], lr=1e-4)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "c4aac8d0-1a12-40b1-a1e2-59cc82cea3f9", - "metadata": {}, - "outputs": [], - "source": [ - "loss_fn = F.cross_entropy" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "4d4bb282-7231-47a1-9342-0d44e4f76d98", - "metadata": {}, - "outputs": [], - "source": [ - "############# code changes ###############\n", - "import intel_extension_for_pytorch as ipex\n", - "model.to(device)\n", - "model, optimizer = ipex.optimize(model, optimizer=optimizer, dtype=torch.bfloat16)\n", - "\n", - "def train(model, optimizer):\n", - " torch.manual_seed(0)\n", - " \n", - " data_loader = tqdm.tqdm(get_train_loader(), desc=\"train\")\n", - " model.train()\n", - " losses = []\n", - "\n", - " for data, target in data_loader:\n", - " ############# code changes ###############\n", - " data, target = data.to(device), target.to(device, dtype=torch.int64)\n", - " #data, target = torch.tensor(data).to(device), torch.tensor(\n", - " # target).to(device)\n", - " optimizer.zero_grad()\n", - " ############# code changes ###############\n", - " with torch.xpu.amp.autocast(enabled=True, dtype=torch.bfloat16):\n", - " output = model(data)\n", - " loss = loss_fn(output, target)\n", - " loss.backward()\n", - " optimizer.step()\n", - " losses.append(loss.detach().cpu().numpy())\n", - " \n", - " return {'train_loss': np.mean(losses),}\n", - "\n", - "def validate(model):\n", - " torch.manual_seed(0)\n", - " model.eval()\n", - " \n", - " data_loader = tqdm.tqdm(get_valid_loader(), desc=\"validate\")\n", - " val_score = 0\n", - " total_samples = 0\n", - "\n", - " with torch.no_grad():\n", - " for data, target in data_loader:\n", - " samples = target.shape[0]\n", - " total_samples += samples\n", - " ############# code changes ###############\n", - " data, target = data.to(device), target.to(device, dtype=torch.int64)\n", - " #data, target = torch.tensor(data).to(device), \\\n", - " # torch.tensor(target).to(device, dtype=torch.int64)\n", - " ############# code changes ###############\n", - " with torch.xpu.amp.autocast(enabled=True, dtype=torch.bfloat16):\n", - " output = model(data)\n", - " pred = output.argmax(dim=1,keepdim=True)\n", - " val_score += pred.eq(target).sum().cpu().numpy()\n", - " \n", - " return {'acc': val_score / total_samples,}" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "0baeafef-212b-4ca8-8edc-baa4904d4b08", - "metadata": {}, - "outputs": [], - "source": [ - "for i in range(5):\n", - " if i == 0:\n", - " name, value = next(iter(validate(model).items())) \n", - " print(f'{name}: {value:f}')\n", - " \n", - " name, value = next(iter(train(model, optimizer).items()))\n", - " print(f'{name}: {value:f}')\n", - " \n", - " name, value = next(iter(validate(model).items())) \n", - " print(f'{name}: {value:f}')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "ed198e40-453a-4a52-8905-665744750c7e", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "b5fd54de-93d9-4440-b7f1-d20e22a4fc71", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "open_fl", - "language": "python", - "name": "open_fl" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.18" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} From 72a1f403fcde8a1ab3b2d75910060bfb7d48ebc9 Mon Sep 17 00:00:00 2001 From: manuelhsantana Date: Thu, 1 Feb 2024 19:14:30 -0800 Subject: [PATCH 4/7] Updated Workflow_Interface_104_MNIST_XPU file --- ...=> Workflow_Interface_104_MNIST_XPU.ipynb} | 34 ++++++++++++++----- 1 file changed, 26 insertions(+), 8 deletions(-) rename openfl-tutorials/experimental/{Workflow_Interface_101_MNIST_XPU.ipynb => Workflow_Interface_104_MNIST_XPU.ipynb} (98%) diff --git a/openfl-tutorials/experimental/Workflow_Interface_101_MNIST_XPU.ipynb b/openfl-tutorials/experimental/Workflow_Interface_104_MNIST_XPU.ipynb similarity index 98% rename from openfl-tutorials/experimental/Workflow_Interface_101_MNIST_XPU.ipynb rename to openfl-tutorials/experimental/Workflow_Interface_104_MNIST_XPU.ipynb index f5c3d4de72..bb37ab8271 100644 --- a/openfl-tutorials/experimental/Workflow_Interface_101_MNIST_XPU.ipynb +++ b/openfl-tutorials/experimental/Workflow_Interface_104_MNIST_XPU.ipynb @@ -5,8 +5,8 @@ "id": "14821d97", "metadata": {}, "source": [ - "# Workflow Interface 101: Quickstart (XPU version)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/intel/openfl/blob/develop/openfl-tutorials/experimental/Workflow_Interface_101_MNIST_XPU.ipynb)" + "# Workflow Interface 104: MNIST XPU\n", + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/intel/openfl/blob/develop/openfl-tutorials/experimental/Workflow_Interface_104_MNIST_XPU.ipynb)" ] }, { @@ -14,15 +14,33 @@ "id": "bd059520", "metadata": {}, "source": [ - "Welcome to the first OpenFL Experimental Workflow Interface tutorial! This notebook introduces the API to get up and running with your first horizontal federated learning workflow. This work has the following goals:\n", + "Welcome to the OpenFL Experimental Workflow Interface tutorial using XPU! This notebook introduces the API to get up and running with your first horizontal federated learning workflow using a XPU. This work has the following goals:\n", "\n", "- Simplify the federated workflow representation\n", "- Help users better understand the steps in federated learning (weight extraction, compression, etc.)\n", "- Designed to maintain data privacy\n", "- Aims for syntatic consistency with the Netflix MetaFlow project. Infrastructure reuse where possible.\n", "- Introduction for use OpenFL and Intel® Extension for PyTorch* with the latest performance optimizations for Intel hardware. Intel® Extension for PyTorch* provides easy GPU acceleration for Intel discrete GPUs through the PyTorch* xpu device.\n", - " \n", - "*Please refer to the [Installation Guide](https://intel.github.io/intel-extension-for-pytorch/xpu/2.1.10+xpu/tutorials/installation.html) for the system requirements and steps to install and use Intel® Extension for PyTorch*. For more detailed tutorials and documentations describing features, APIs and technical details, please refer to [Intel® Extension for PyTorch* Documentation](https://intel.github.io/intel-extension-for-pytorch/xpu/2.1.10+xpu/index.html)." + " \n" + ] + }, + { + "cell_type": "markdown", + "id": "c334e4c2-de21-458e-a9f8-eac1bdba8df1", + "metadata": {}, + "source": [ + "# Quick XPU Setup\n", + "For a successful setup, please follow the steps outlined in the [Installation Guide](https://intel.github.io/intel-extension-for-pytorch/xpu/2.1.10+xpu/tutorials/installation.html). This guide provides detailed information on system requirements and the installation process for the Intel® Extension for PyTorch. For a deeper understanding of features, APIs, and technical details, refer to the [Intel® Extension for PyTorch* Documentation](https://intel.github.io/intel-extension-for-pytorch/xpu/2.1.10+xpu/index.html).\n", + "\n", + "This Jupyter Notebook has been tested and confirmed to work with the following versions:\n", + "- intel-extension-for-pytorch==2.0.120 (xpu)\n", + "- pytorch==2.0.1\n", + "- torchvision==0.15.2 \n", + "\n", + "These versions were obtained from official Intel® channels.\n", + "\n", + "Additionally, the XPU driver version used in testing was:\n", + "- XPU_Driver==803\n" ] }, { @@ -689,9 +707,9 @@ ], "metadata": { "kernelspec": { - "display_name": "open_fl", + "display_name": "conda_IPEX", "language": "python", - "name": "open_fl" + "name": "conda_ipex" }, "language_info": { "codemirror_mode": { @@ -703,7 +721,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.18" + "version": "3.8.18" } }, "nbformat": 4, From 42bd6aec12f60e6f3afecb11a54043401b4dfed3 Mon Sep 17 00:00:00 2001 From: manuelhsantana Date: Thu, 1 Feb 2024 19:15:43 -0800 Subject: [PATCH 5/7] Added TinyImagenet example for interactive api and XPU --- .../PyTorch_TinyImageNet_XPU/README.md | 84 +++ .../director/director_config.yaml | 5 + .../director/start_director.sh | 4 + .../director/start_director_with_tls.sh | 4 + .../envoy/envoy_config.yaml | 10 + .../envoy/requirements.txt | 1 + .../envoy/start_envoy.sh | 4 + .../envoy/start_envoy_with_tls.sh | 6 + .../envoy/tinyimagenet_shard_descriptor.py | 120 ++++ .../workspace/pytorch_tinyimagenet_XPU.ipynb | 530 ++++++++++++++++++ .../workspace/requirements.txt | 4 + 11 files changed, 772 insertions(+) create mode 100644 openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/README.md create mode 100644 openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/director/director_config.yaml create mode 100755 openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/director/start_director.sh create mode 100755 openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/director/start_director_with_tls.sh create mode 100644 openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/envoy/envoy_config.yaml create mode 100644 openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/envoy/requirements.txt create mode 100755 openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/envoy/start_envoy.sh create mode 100755 openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/envoy/start_envoy_with_tls.sh create mode 100644 openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/envoy/tinyimagenet_shard_descriptor.py create mode 100644 openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/workspace/pytorch_tinyimagenet_XPU.ipynb create mode 100644 openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/workspace/requirements.txt diff --git a/openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/README.md b/openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/README.md new file mode 100644 index 0000000000..ffe8c79b24 --- /dev/null +++ b/openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/README.md @@ -0,0 +1,84 @@ +# PyTorch_TinyImageNet + +## **How to run this tutorial (without TLC and locally as a simulation):** +
+ +### 0a. If you haven't done so already, create a virtual environment, install OpenFL, and upgrade pip: + - For help with this step, visit the "Install the Package" section of the [OpenFL installation instructions](https://openfl.readthedocs.io/en/latest/install.html#install-the-package). + +
+ +### 0b. Quick XPU Setup + For a successful setup, please follow the steps outlined in the Installation Guide. This guide provides detailed information on system requirements and the installation process for the Intel® Extension for PyTorch. For a deeper understanding of features, APIs, and technical details, refer to the Intel® Extension for PyTorch* Documentation. + +This Jupyter Notebook has been tested and confirmed to work with the following versions: + + - intel-extension-for-pytorch==2.0.120 (xpu) + - pytorch==2.0.1 + - torchvision==0.15.2 + +These versions were obtained from official Intel® channels. + +Additionally, the XPU driver version used in testing was: + + - XPU_Driver==803 + + +
+ +### 1. Split terminal into 3 (1 terminal for the director, 1 for the envoy, and 1 for the experiment) + +
+ +### 2. Do the following in each terminal: + - Activate the virtual environment from step 0: + + ```sh + source venv/bin/activate + ``` + - If you are in a network environment with a proxy, ensure proxy environment variables are set in each of your terminals. + - Navigate to the tutorial: + + ```sh + cd openfl/openfl-tutorials/interactive_api/PyTorch_TinyImageNet + ``` + +
+ +### 3. In the first terminal, run the director: + +```sh +cd director +./start_director.sh +``` + +
+ +### 4. In the second terminal, install requirements and run the envoy: + +```sh +cd envoy +pip install -r requirements.txt +./start_envoy.sh env_one envoy_config.yaml +``` + +Optional: Run a second envoy in an additional terminal: + - Ensure step 2 is complete for this terminal as well. + - Run the second envoy: +```sh +cd envoy +./start_envoy.sh env_two envoy_config.yaml +``` + +
+ +### 5. Now that your director and envoy terminals are set up, run the Jupyter Notebook in your experiment terminal: + +```sh +cd workspace +jupyter lab pytorch_tinyimagenet_XPU.ipynb +``` +- A Jupyter Server URL will appear in your terminal. In your browser, proceed to that link. Once the webpage loads, click on the pytorch_tinyimagenet.ipynb file. +- To run the experiment, select the icon that looks like two triangles to "Restart Kernel and Run All Cells". +- You will notice activity in your terminals as the experiment runs, and when the experiment is finished the director terminal will display a message that the experiment has finished successfully. + diff --git a/openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/director/director_config.yaml b/openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/director/director_config.yaml new file mode 100644 index 0000000000..3fc4137943 --- /dev/null +++ b/openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/director/director_config.yaml @@ -0,0 +1,5 @@ +settings: + listen_host: localhost + listen_port: 50051 + sample_shape: ['64', '64', '3'] + target_shape: ['64', '64'] diff --git a/openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/director/start_director.sh b/openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/director/start_director.sh new file mode 100755 index 0000000000..5806a6cc0a --- /dev/null +++ b/openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/director/start_director.sh @@ -0,0 +1,4 @@ +#!/bin/bash +set -e + +fx director start --disable-tls -c director_config.yaml \ No newline at end of file diff --git a/openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/director/start_director_with_tls.sh b/openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/director/start_director_with_tls.sh new file mode 100755 index 0000000000..5d6d46a792 --- /dev/null +++ b/openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/director/start_director_with_tls.sh @@ -0,0 +1,4 @@ +#!/bin/bash +set -e +FQDN=$1 +fx director start -c director_config.yaml -rc cert/root_ca.crt -pk cert/"${FQDN}".key -oc cert/"${FQDN}".crt \ No newline at end of file diff --git a/openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/envoy/envoy_config.yaml b/openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/envoy/envoy_config.yaml new file mode 100644 index 0000000000..cb04056976 --- /dev/null +++ b/openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/envoy/envoy_config.yaml @@ -0,0 +1,10 @@ +params: + cuda_devices: [] + +optional_plugin_components: {} + +shard_descriptor: + template: tinyimagenet_shard_descriptor.TinyImageNetShardDescriptor + params: + data_folder: tinyimagenet_data + rank_worldsize: 1,1 diff --git a/openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/envoy/requirements.txt b/openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/envoy/requirements.txt new file mode 100644 index 0000000000..2e12901526 --- /dev/null +++ b/openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/envoy/requirements.txt @@ -0,0 +1 @@ +Pillow==10.0.1 diff --git a/openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/envoy/start_envoy.sh b/openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/envoy/start_envoy.sh new file mode 100755 index 0000000000..1dd6591439 --- /dev/null +++ b/openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/envoy/start_envoy.sh @@ -0,0 +1,4 @@ +#!/bin/bash +set -e + +fx envoy start -n env_one --disable-tls --envoy-config-path envoy_config.yaml -dh localhost -dp 50051 \ No newline at end of file diff --git a/openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/envoy/start_envoy_with_tls.sh b/openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/envoy/start_envoy_with_tls.sh new file mode 100755 index 0000000000..06b2916a4f --- /dev/null +++ b/openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/envoy/start_envoy_with_tls.sh @@ -0,0 +1,6 @@ +#!/bin/bash +set -e +ENVOY_NAME=$1 +DIRECTOR_FQDN=$2 + +fx envoy start -n "$ENVOY_NAME" --envoy-config-path envoy_config.yaml -dh "$DIRECTOR_FQDN" -dp 50051 -rc cert/root_ca.crt -pk cert/"$ENVOY_NAME".key -oc cert/"$ENVOY_NAME".crt \ No newline at end of file diff --git a/openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/envoy/tinyimagenet_shard_descriptor.py b/openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/envoy/tinyimagenet_shard_descriptor.py new file mode 100644 index 0000000000..7101642a27 --- /dev/null +++ b/openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/envoy/tinyimagenet_shard_descriptor.py @@ -0,0 +1,120 @@ +# Copyright (C) 2020-2021 Intel Corporation +# SPDX-License-Identifier: Apache-2.0 + +"""TinyImageNet Shard Descriptor.""" + +import glob +import logging +import os +import shutil +from pathlib import Path +from typing import Tuple + +from PIL import Image + +from openfl.interface.interactive_api.shard_descriptor import ShardDataset +from openfl.interface.interactive_api.shard_descriptor import ShardDescriptor + +logger = logging.getLogger(__name__) + + +class TinyImageNetDataset(ShardDataset): + """TinyImageNet shard dataset class.""" + + NUM_IMAGES_PER_CLASS = 500 + + def __init__(self, data_folder: Path, data_type='train', rank=1, worldsize=1): + """Initialize TinyImageNetDataset.""" + self.data_type = data_type + self._common_data_folder = data_folder + self._data_folder = os.path.join(data_folder, data_type) + self.labels = {} # fname - label number mapping + self.image_paths = sorted( + glob.iglob( + os.path.join(self._data_folder, '**', '*.JPEG'), + recursive=True + ) + )[rank - 1::worldsize] + wnids_path = os.path.join(self._common_data_folder, 'wnids.txt') + with open(wnids_path, 'r', encoding='utf-8') as fp: + self.label_texts = sorted([text.strip() for text in fp.readlines()]) + self.label_text_to_number = {text: i for i, text in enumerate(self.label_texts)} + self.fill_labels() + + def __len__(self) -> int: + """Return the len of the shard dataset.""" + return len(self.image_paths) + + def __getitem__(self, index: int) -> Tuple['Image', int]: + """Return an item by the index.""" + file_path = self.image_paths[index] + label = self.labels[os.path.basename(file_path)] + return self.read_image(file_path), label + + def read_image(self, path: Path) -> Image: + """Read the image.""" + img = Image.open(path) + return img + + def fill_labels(self) -> None: + """Fill labels.""" + if self.data_type == 'train': + for label_text, i in self.label_text_to_number.items(): + for cnt in range(self.NUM_IMAGES_PER_CLASS): + self.labels[f'{label_text}_{cnt}.JPEG'] = i + elif self.data_type == 'val': + val_annotations_path = os.path.join(self._data_folder, 'val_annotations.txt') + with open(val_annotations_path, 'r', encoding='utf-8') as fp: + for line in fp.readlines(): + terms = line.split('\t') + file_name, label_text = terms[0], terms[1] + self.labels[file_name] = self.label_text_to_number[label_text] + + +class TinyImageNetShardDescriptor(ShardDescriptor): + """Shard descriptor class.""" + + def __init__( + self, + data_folder: str = 'data', + rank_worldsize: str = '1,1', + **kwargs + ): + """Initialize TinyImageNetShardDescriptor.""" + self.common_data_folder = Path.cwd() / data_folder + self.data_folder = Path.cwd() / data_folder / 'tiny-imagenet-200' + self.download_data() + self.rank, self.worldsize = tuple(int(num) for num in rank_worldsize.split(',')) + + def download_data(self): + """Download prepared shard dataset.""" + zip_file_path = self.common_data_folder / 'tiny-imagenet-200.zip' + os.makedirs(self.common_data_folder, exist_ok=True) + os.system(f'wget --no-clobber http://cs231n.stanford.edu/tiny-imagenet-200.zip' + f' -O {zip_file_path}') + shutil.unpack_archive(str(zip_file_path), str(self.common_data_folder)) + + def get_dataset(self, dataset_type): + """Return a shard dataset by type.""" + return TinyImageNetDataset( + data_folder=self.data_folder, + data_type=dataset_type, + rank=self.rank, + worldsize=self.worldsize + ) + + @property + def sample_shape(self): + """Return the sample shape info.""" + return ['64', '64', '3'] + + @property + def target_shape(self): + """Return the target shape info.""" + return ['64', '64'] + + @property + def dataset_description(self) -> str: + """Return the shard dataset description.""" + return (f'TinyImageNetDataset dataset, shard number {self.rank}' + f' out of {self.worldsize}') diff --git a/openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/workspace/pytorch_tinyimagenet_XPU.ipynb b/openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/workspace/pytorch_tinyimagenet_XPU.ipynb new file mode 100644 index 0000000000..02d9008146 --- /dev/null +++ b/openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/workspace/pytorch_tinyimagenet_XPU.ipynb @@ -0,0 +1,530 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "26fdd9ed", + "metadata": {}, + "source": [ + "# Federated PyTorch TinyImageNet Tutorial XPU Version" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "895288d0", + "metadata": {}, + "outputs": [], + "source": [ + "# For interactive api requirements. For XPU requirements, review Readme Quick XPU Setup section.\n", + "!pip install -r requirements.txt" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "billion-drunk", + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import glob\n", + "\n", + "from PIL import Image\n", + "\n", + "import numpy as np\n", + "import torch\n", + "import torch.nn as nn\n", + "import torch.nn.functional as F\n", + "import torch.optim as optim\n", + "from openfl.interface.interactive_api.federation import Federation\n", + "from openfl.interface.interactive_api.experiment import TaskInterface, DataInterface, ModelInterface, FLExperiment\n", + "from copy import deepcopy\n", + "import torchvision\n", + "from torchvision import transforms as T\n", + "from torch.utils.data import Dataset\n", + "from torch.utils.data import DataLoader\n", + "import tqdm\n", + "\n", + "import intel_extension_for_pytorch as ipex\n", + "device = torch.device(\"xpu\")\n", + "\n", + "torch.manual_seed(0)\n", + "np.random.seed(0)" + ] + }, + { + "cell_type": "markdown", + "id": "246f9c98", + "metadata": {}, + "source": [ + "## Connect to the Federation" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d657e463", + "metadata": {}, + "outputs": [], + "source": [ + "# Create a federation\n", + "\n", + "# please use the same identificator that was used in signed certificate\n", + "client_id = 'api'\n", + "cert_dir = 'cert'\n", + "director_node_fqdn = 'localhost'\n", + "# 1) Run with API layer - Director mTLS \n", + "# If the user wants to enable mTLS their must provide CA root chain, and signed key pair to the federation interface\n", + "# cert_chain = f'{cert_dir}/root_ca.crt'\n", + "# api_certificate = f'{cert_dir}/{client_id}.crt'\n", + "# api_private_key = f'{cert_dir}/{client_id}.key'\n", + "\n", + "# federation = Federation(client_id=client_id, director_node_fqdn=director_node_fqdn, director_port='50051',\n", + "# cert_chain=cert_chain, api_cert=api_certificate, api_private_key=api_private_key)\n", + "\n", + "# --------------------------------------------------------------------------------------------------------------------\n", + "\n", + "# 2) Run with TLS disabled (trusted environment)\n", + "# Federation can also determine local fqdn automatically\n", + "federation = Federation(client_id=client_id, director_node_fqdn=director_node_fqdn, director_port='50051', tls=False)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1abebd90", + "metadata": {}, + "outputs": [], + "source": [ + "federation.target_shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "47dcfab3", + "metadata": {}, + "outputs": [], + "source": [ + "shard_registry = federation.get_shard_registry()\n", + "shard_registry" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a2a6c237", + "metadata": {}, + "outputs": [], + "source": [ + "# First, request a dummy_shard_desc that holds information about the federated dataset \n", + "dummy_shard_desc = federation.get_dummy_shard_descriptor(size=10)\n", + "dummy_shard_dataset = dummy_shard_desc.get_dataset('train')\n", + "sample, target = dummy_shard_dataset[0]\n", + "print(sample.shape)\n", + "print(target.shape)" + ] + }, + { + "cell_type": "markdown", + "id": "cc0dbdbd", + "metadata": {}, + "source": [ + "## Creating a FL experiment using Interactive API" + ] + }, + { + "cell_type": "markdown", + "id": "b0979470", + "metadata": {}, + "source": [ + "### Register dataset" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7dda1680", + "metadata": {}, + "outputs": [], + "source": [ + "normalize = T.Normalize(\n", + " mean=[0.485, 0.456, 0.406],\n", + " std=[0.229, 0.224, 0.225]\n", + ")\n", + "\n", + "augmentation = T.RandomApply(\n", + " [T.RandomHorizontalFlip(),\n", + " T.RandomRotation(10),\n", + " T.RandomResizedCrop(64)], \n", + " p=.8\n", + ")\n", + "\n", + "training_transform = T.Compose(\n", + " [T.Lambda(lambda x: x.convert(\"RGB\")),\n", + " T.ToTensor(),\n", + " augmentation,\n", + " normalize]\n", + ")\n", + "\n", + "valid_transform = T.Compose(\n", + " [T.Lambda(lambda x: x.convert(\"RGB\")),\n", + " T.ToTensor(),\n", + " normalize]\n", + ")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0314d5bf", + "metadata": {}, + "outputs": [], + "source": [ + "class TransformedDataset(Dataset):\n", + " \"\"\"Image Person ReID Dataset.\"\"\"\n", + "\n", + " def __init__(self, dataset, transform=None, target_transform=None):\n", + " \"\"\"Initialize Dataset.\"\"\"\n", + " self.dataset = dataset\n", + " self.transform = transform\n", + " self.target_transform = target_transform\n", + "\n", + " def __len__(self):\n", + " \"\"\"Length of dataset.\"\"\"\n", + " return len(self.dataset)\n", + "\n", + " def __getitem__(self, index):\n", + " img, label = self.dataset[index]\n", + " label = self.target_transform(label) if self.target_transform else label\n", + " img = self.transform(img) if self.transform else img\n", + " return img, label\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "01369e3b", + "metadata": {}, + "outputs": [], + "source": [ + "class TinyImageNetDataset(DataInterface):\n", + " def __init__(self, **kwargs):\n", + " self.kwargs = kwargs\n", + " \n", + " @property\n", + " def shard_descriptor(self):\n", + " return self._shard_descriptor\n", + " \n", + " @shard_descriptor.setter\n", + " def shard_descriptor(self, shard_descriptor):\n", + " \"\"\"\n", + " Describe per-collaborator procedures or sharding.\n", + "\n", + " This method will be called during a collaborator initialization.\n", + " Local shard_descriptor will be set by Envoy.\n", + " \"\"\"\n", + " self._shard_descriptor = shard_descriptor\n", + " \n", + " self.train_set = TransformedDataset(\n", + " self._shard_descriptor.get_dataset('train'),\n", + " transform=training_transform\n", + " )\n", + " self.valid_set = TransformedDataset(\n", + " self._shard_descriptor.get_dataset('val'),\n", + " transform=valid_transform\n", + " )\n", + " \n", + " def get_train_loader(self, **kwargs):\n", + " \"\"\"\n", + " Output of this method will be provided to tasks with optimizer in contract\n", + " \"\"\"\n", + " generator=torch.Generator()\n", + " generator.manual_seed(0)\n", + " return DataLoader(\n", + " self.train_set, batch_size=self.kwargs['train_bs'], shuffle=True, generator=generator\n", + " )\n", + "\n", + " def get_valid_loader(self, **kwargs):\n", + " \"\"\"\n", + " Output of this method will be provided to tasks without optimizer in contract\n", + " \"\"\"\n", + " return DataLoader(self.valid_set, batch_size=self.kwargs['valid_bs'])\n", + "\n", + " def get_train_data_size(self):\n", + " \"\"\"\n", + " Information for aggregation\n", + " \"\"\"\n", + " return len(self.train_set)\n", + "\n", + " def get_valid_data_size(self):\n", + " \"\"\"\n", + " Information for aggregation\n", + " \"\"\"\n", + " return len(self.valid_set)\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4a6cedef", + "metadata": {}, + "outputs": [], + "source": [ + "fed_dataset = TinyImageNetDataset(train_bs=64, valid_bs=64)" + ] + }, + { + "cell_type": "markdown", + "id": "74cac654", + "metadata": {}, + "source": [ + "### Describe the model and optimizer" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "43e25fe3", + "metadata": {}, + "outputs": [], + "source": [ + "\"\"\"\n", + "MobileNetV2 model\n", + "\"\"\"\n", + "\n", + "class Net(nn.Module):\n", + " def __init__(self):\n", + " torch.manual_seed(0)\n", + " super(Net, self).__init__()\n", + " self.model = torchvision.models.mobilenet_v2(pretrained=True)\n", + " self.model.requires_grad_(False)\n", + " self.model.classifier[1] = torch.nn.Linear(in_features=1280, \\\n", + " out_features=200, bias=True)\n", + "\n", + " def forward(self, x):\n", + " x = self.model.forward(x)\n", + " return x\n", + "\n", + "model_net = Net()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "79021778", + "metadata": {}, + "outputs": [], + "source": [ + "params_to_update = []\n", + "for param in model_net.parameters():\n", + " if param.requires_grad == True:\n", + " params_to_update.append(param)\n", + " \n", + "optimizer_adam = optim.Adam(params_to_update, lr=1e-4)\n", + "\n", + "def cross_entropy(output, target):\n", + " \"\"\"Binary cross-entropy metric\n", + " \"\"\"\n", + " return F.cross_entropy(input=output,target=target)" + ] + }, + { + "cell_type": "markdown", + "id": "f097cdc5", + "metadata": {}, + "source": [ + "### Register model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "06a8cca8", + "metadata": {}, + "outputs": [], + "source": [ + "framework_adapter = 'openfl.plugins.frameworks_adapters.pytorch_adapter.FrameworkAdapterPlugin'\n", + "model_interface = ModelInterface(model=model_net, optimizer=optimizer_adam, framework_plugin=framework_adapter)\n", + "\n", + "# Save the initial model state\n", + "initial_model = deepcopy(model_net)" + ] + }, + { + "cell_type": "markdown", + "id": "849c165b", + "metadata": {}, + "source": [ + "## Define and register FL tasks" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1d7e010d-b885-4b77-83d5-e69e239be5a6", + "metadata": {}, + "outputs": [], + "source": [ + "# Counter class for the Rounds\n", + "class Counter:\n", + " def __init__(self):\n", + " self.value = 0\n", + " \n", + " def current(self):\n", + " return self.value\n", + " \n", + " def add(self):\n", + " self.value += 1\n", + "\n", + "counter = Counter()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b9649385", + "metadata": {}, + "outputs": [], + "source": [ + "task_interface = TaskInterface()\n", + "\n", + "\n", + "# Task interface currently supports only standalone functions.\n", + "@task_interface.add_kwargs(**{ 'device':'xpu'})\n", + "@task_interface.register_fl_task(model='model_net', data_loader='train_loader', \\\n", + " device='device', optimizer='optimizer') \n", + "def train(model_net, train_loader, optimizer, device, loss_fn=cross_entropy, some_parameter=None):\n", + " torch.manual_seed(0)\n", + " \n", + " # Start counter of rounds\n", + " round = counter.current()\n", + " \n", + " model_net.train()\n", + " # On first round move model to device\n", + " if round == 0:\n", + " model_net.to(device)\n", + " model_net, optimizer = ipex.optimize(model_net, optimizer=optimizer_adam)\n", + " \n", + " counter.add()\n", + " \n", + " train_loader = tqdm.tqdm(train_loader, desc=\"train\")\n", + " model_net.train()\n", + " model_net.to(device)\n", + "\n", + " losses = []\n", + "\n", + " for data, target in train_loader:\n", + " data, target = torch.tensor(data).to(device), torch.tensor(\n", + " target).to(device)\n", + " optimizer.zero_grad()\n", + " # Code changes\n", + " with torch.xpu.amp.autocast(enabled=True, dtype=torch.bfloat16):\n", + " output = model_net(data)\n", + " loss = loss_fn(output=output, target=target)\n", + " loss.backward()\n", + " optimizer.step()\n", + " losses.append(loss.detach().cpu().numpy())\n", + " \n", + " return {'train_loss': np.mean(losses),}\n", + "\n", + "@task_interface.add_kwargs(**{ 'device':'xpu'})\n", + "@task_interface.register_fl_task(model='model_net', device='device',data_loader='val_loader') \n", + "def validate(model_net, val_loader, device):\n", + " torch.manual_seed(0)\n", + " model_net.eval()\n", + " model_net.to(device)\n", + " \n", + " val_loader = tqdm.tqdm(val_loader, desc=\"validate\")\n", + " val_score = 0\n", + " total_samples = 0\n", + "\n", + " with torch.no_grad():\n", + " for data, target in val_loader:\n", + " samples = target.shape[0]\n", + " total_samples += samples\n", + " data, target = torch.tensor(data).to(device), \\\n", + " torch.tensor(target).to(device, dtype=torch.int64)\n", + " # Code changes\n", + " with torch.xpu.amp.autocast(enabled=True, dtype=torch.int64):\n", + " output = model_net(data)\n", + " pred = output.argmax(dim=1,keepdim=True)\n", + " val_score += pred.eq(target).sum().cpu().numpy()\n", + " \n", + " return {'acc': val_score / total_samples,}" + ] + }, + { + "cell_type": "markdown", + "id": "8f0ebf2d", + "metadata": {}, + "source": [ + "## Time to start a federated learning experiment" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d41b7896", + "metadata": {}, + "outputs": [], + "source": [ + "# create an experimnet in federation\n", + "experiment_name = 'tinyimagenet_test_experiment'\n", + "fl_experiment = FLExperiment(federation=federation, experiment_name=experiment_name)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "41b44de9", + "metadata": {}, + "outputs": [], + "source": [ + "# The following command zips the workspace and python requirements to be transfered to collaborator nodes\n", + "fl_experiment.start(\n", + " model_provider=model_interface, \n", + " task_keeper=task_interface,\n", + " data_loader=fed_dataset,\n", + " rounds_to_train=5,\n", + " opt_treatment='CONTINUE_GLOBAL'\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "83edd88f", + "metadata": {}, + "outputs": [], + "source": [ + "# If user want to stop IPython session, then reconnect and check how experiment is going\n", + "# fl_experiment.restore_experiment_state(model_interface)\n", + "\n", + "fl_experiment.stream_metrics(tensorboard_logs=False)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "conda_IPEX", + "language": "python", + "name": "conda_ipex" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.18" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/workspace/requirements.txt b/openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/workspace/requirements.txt new file mode 100644 index 0000000000..e66a212845 --- /dev/null +++ b/openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/workspace/requirements.txt @@ -0,0 +1,4 @@ +torch==1.13.1 +torchvision==0.14.1 +setuptools>=65.5.1 # not directly required, pinned by Snyk to avoid a vulnerability +wheel>=0.38.0 # not directly required, pinned by Snyk to avoid a vulnerability From f5221f978629fe791a5857891ed175b94e2a20b0 Mon Sep 17 00:00:00 2001 From: manuelhsantana Date: Wed, 7 Feb 2024 20:53:05 -0800 Subject: [PATCH 6/7] Update xpu definition and copyright --- .../Workflow_Interface_104_MNIST_XPU.ipynb | 10 ++++++++-- .../interactive_api/PyTorch_TinyImageNet_XPU/README.md | 8 +++++++- .../envoy/tinyimagenet_shard_descriptor.py | 2 +- 3 files changed, 16 insertions(+), 4 deletions(-) diff --git a/openfl-tutorials/experimental/Workflow_Interface_104_MNIST_XPU.ipynb b/openfl-tutorials/experimental/Workflow_Interface_104_MNIST_XPU.ipynb index bb37ab8271..d2cdea794d 100644 --- a/openfl-tutorials/experimental/Workflow_Interface_104_MNIST_XPU.ipynb +++ b/openfl-tutorials/experimental/Workflow_Interface_104_MNIST_XPU.ipynb @@ -14,13 +14,15 @@ "id": "bd059520", "metadata": {}, "source": [ - "Welcome to the OpenFL Experimental Workflow Interface tutorial using XPU! This notebook introduces the API to get up and running with your first horizontal federated learning workflow using a XPU. This work has the following goals:\n", + "Welcome to the OpenFL Experimental Workflow Interface tutorial using Intel® Data Center GPU Max Series, also referred to as XPU in this context! Before we dive in, let's clarify some terms. XPU is a term coined by Intel to describe their line of computing devices, which includes CPUs, GPUs, FPGAs, and other accelerators. In this tutorial, we will be focusing on the Intel® Data Center GPU Max Series model, a powerful GPU that is part of Intel's XPU lineup. \n", + "\n", + "This notebook introduces the API to get up and running with your first horizontal federated learning workflow using a XPU. This work has the following goals:\n", "\n", "- Simplify the federated workflow representation\n", "- Help users better understand the steps in federated learning (weight extraction, compression, etc.)\n", "- Designed to maintain data privacy\n", "- Aims for syntatic consistency with the Netflix MetaFlow project. Infrastructure reuse where possible.\n", - "- Introduction for use OpenFL and Intel® Extension for PyTorch* with the latest performance optimizations for Intel hardware. Intel® Extension for PyTorch* provides easy GPU acceleration for Intel discrete GPUs through the PyTorch* xpu device.\n", + "- Introduction for use OpenFL and Intel® Extension for PyTorch* with the latest performance optimizations for Intel hardware. Intel® Extension for PyTorch* provides easy GPU acceleration for Intel discrete GPUs through the PyTorch* XPU device.\n", " \n" ] }, @@ -30,8 +32,12 @@ "metadata": {}, "source": [ "# Quick XPU Setup\n", + "In this tutorial, when we refer to XPU, we are specifically referring to the Intel® Data Center GPU Max Series. When using the Intel® Extension for PyTorch* package, selecting the device as 'xpu' will refer to this Intel® Data Center GPU Max Series.\n", + "\n", "For a successful setup, please follow the steps outlined in the [Installation Guide](https://intel.github.io/intel-extension-for-pytorch/xpu/2.1.10+xpu/tutorials/installation.html). This guide provides detailed information on system requirements and the installation process for the Intel® Extension for PyTorch. For a deeper understanding of features, APIs, and technical details, refer to the [Intel® Extension for PyTorch* Documentation](https://intel.github.io/intel-extension-for-pytorch/xpu/2.1.10+xpu/index.html).\n", "\n", + "Hardware Prerequisite: Intel® Data Center GPU Max Series.\n", + "\n", "This Jupyter Notebook has been tested and confirmed to work with the following versions:\n", "- intel-extension-for-pytorch==2.0.120 (xpu)\n", "- pytorch==2.0.1\n", diff --git a/openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/README.md b/openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/README.md index ffe8c79b24..f5c89b44af 100644 --- a/openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/README.md +++ b/openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/README.md @@ -3,13 +3,19 @@ ## **How to run this tutorial (without TLC and locally as a simulation):**
+Before we dive in, let's clarify some terms. XPU is a term coined by Intel to describe their line of computing devices, which includes CPUs, GPUs, FPGAs, and other accelerators. In this tutorial, we will be focusing on the Intel® Data Center GPU Max Series model, a powerful GPU that is part of Intel's XPU lineup. + ### 0a. If you haven't done so already, create a virtual environment, install OpenFL, and upgrade pip: - For help with this step, visit the "Install the Package" section of the [OpenFL installation instructions](https://openfl.readthedocs.io/en/latest/install.html#install-the-package).
### 0b. Quick XPU Setup - For a successful setup, please follow the steps outlined in the Installation Guide. This guide provides detailed information on system requirements and the installation process for the Intel® Extension for PyTorch. For a deeper understanding of features, APIs, and technical details, refer to the Intel® Extension for PyTorch* Documentation. + In this tutorial, when we refer to XPU, we are specifically referring to the Intel® Data Center GPU Max Series. When using the Intel® Extension for PyTorch* package, selecting the device as 'xpu' will refer to this Intel® Data Center GPU Max Series. + + For a successful setup, please follow the steps outlined in the [Installation Guide](https://intel.github.io/intel-extension-for-pytorch/xpu/2.1.10+xpu/tutorials/installation.html). This guide provides detailed information on system requirements and the installation process for the Intel® Extension for PyTorch. For a deeper understanding of features, APIs, and technical details, refer to the [Intel® Extension for PyTorch* Documentation](https://intel.github.io/intel-extension-for-pytorch/xpu/2.1.10+xpu/index.html). + +Hardware Prerequisite: Intel® Data Center GPU Max Series. This Jupyter Notebook has been tested and confirmed to work with the following versions: diff --git a/openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/envoy/tinyimagenet_shard_descriptor.py b/openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/envoy/tinyimagenet_shard_descriptor.py index 7101642a27..cb161d9d67 100644 --- a/openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/envoy/tinyimagenet_shard_descriptor.py +++ b/openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/envoy/tinyimagenet_shard_descriptor.py @@ -1,4 +1,4 @@ -# Copyright (C) 2020-2021 Intel Corporation +# Copyright (C) 2020-2024 Intel Corporation # SPDX-License-Identifier: Apache-2.0 """TinyImageNet Shard Descriptor.""" From 33cbe08d1b0fc497b0144e48fbb80d9a70d90f30 Mon Sep 17 00:00:00 2001 From: manuelhsantana Date: Thu, 15 Feb 2024 15:34:54 -0800 Subject: [PATCH 7/7] Added link for download xpu driver --- .../experimental/Workflow_Interface_104_MNIST_XPU.ipynb | 4 ++-- .../interactive_api/PyTorch_TinyImageNet_XPU/README.md | 4 ++-- 2 files changed, 4 insertions(+), 4 deletions(-) diff --git a/openfl-tutorials/experimental/Workflow_Interface_104_MNIST_XPU.ipynb b/openfl-tutorials/experimental/Workflow_Interface_104_MNIST_XPU.ipynb index d2cdea794d..4af4f385ae 100644 --- a/openfl-tutorials/experimental/Workflow_Interface_104_MNIST_XPU.ipynb +++ b/openfl-tutorials/experimental/Workflow_Interface_104_MNIST_XPU.ipynb @@ -14,7 +14,7 @@ "id": "bd059520", "metadata": {}, "source": [ - "Welcome to the OpenFL Experimental Workflow Interface tutorial using Intel® Data Center GPU Max Series, also referred to as XPU in this context! Before we dive in, let's clarify some terms. XPU is a term coined by Intel to describe their line of computing devices, which includes CPUs, GPUs, FPGAs, and other accelerators. In this tutorial, we will be focusing on the Intel® Data Center GPU Max Series model, a powerful GPU that is part of Intel's XPU lineup. \n", + "Welcome to the OpenFL Experimental Workflow Interface tutorial using Intel® Data Center GPU Max Series, also referred to as XPU in this context! Before we dive in, let's clarify some terms. XPU is a term coined by Intel to describe their line of computing devices, which includes CPUs, GPUs, FPGAs, and other accelerators. In this tutorial, we will be focusing on the Intel® Data Center GPU Max Series model, a GPU that is part of Intel's XPU lineup. \n", "\n", "This notebook introduces the API to get up and running with your first horizontal federated learning workflow using a XPU. This work has the following goals:\n", "\n", @@ -46,7 +46,7 @@ "These versions were obtained from official Intel® channels.\n", "\n", "Additionally, the XPU driver version used in testing was:\n", - "- XPU_Driver==803\n" + "- [XPU_Driver==803](https://dgpu-docs.intel.com/driver/installation.html)\n" ] }, { diff --git a/openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/README.md b/openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/README.md index f5c89b44af..277431c48c 100644 --- a/openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/README.md +++ b/openfl-tutorials/interactive_api/PyTorch_TinyImageNet_XPU/README.md @@ -3,7 +3,7 @@ ## **How to run this tutorial (without TLC and locally as a simulation):**
-Before we dive in, let's clarify some terms. XPU is a term coined by Intel to describe their line of computing devices, which includes CPUs, GPUs, FPGAs, and other accelerators. In this tutorial, we will be focusing on the Intel® Data Center GPU Max Series model, a powerful GPU that is part of Intel's XPU lineup. +Before we dive in, let's clarify some terms. XPU is a term coined by Intel to describe their line of computing devices, which includes CPUs, GPUs, FPGAs, and other accelerators. In this tutorial, we will be focusing on the Intel® Data Center GPU Max Series model, a GPU that is part of Intel's XPU lineup. ### 0a. If you haven't done so already, create a virtual environment, install OpenFL, and upgrade pip: - For help with this step, visit the "Install the Package" section of the [OpenFL installation instructions](https://openfl.readthedocs.io/en/latest/install.html#install-the-package). @@ -27,7 +27,7 @@ These versions were obtained from official Intel® channels. Additionally, the XPU driver version used in testing was: - - XPU_Driver==803 + - [XPU_Driver==803](https://dgpu-docs.intel.com/driver/installation.html)