-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvexity_constraint.py
53 lines (40 loc) · 1.88 KB
/
convexity_constraint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import variables
from tensorflow.python.framework import dtypes
import numpy as _np
def convex_add(input_layer, layer_3, initial_convex_par=0.5, trainable=False):
"""
Do a convex combination of input_layer and layer_3. That is, return the output of
lamda* input_layer + (1 - lamda) * layer_3
Args:
input_layer (tf.Tensor): Input to take convex combinatio of
layer_3 (tf.Tensor): Input to take convex combinatio of
initial_convex_par (float): Initial value for convex parameter. Must be
in [0, 1].
trainable (bool): Whether convex parameter should be trainable
or not.
Returns:
tf.Tensor: Result of convex combination
"""
# Will implement this as sigmoid(p)*input_layer + (1-sigmoid(p))*layer_3 to ensure
# convex parameter to be in the unit interval without constraints during
# optimization
# Find value for p, also check for legal initial_convex_par
if initial_convex_par < 0:
raise ValueError("Convex parameter must be >=0")
elif initial_convex_par == 0:
# sigmoid(-16) is approximately a 32bit roundoff error, practically 0
initial_p_value = -16
elif initial_convex_par < 1:
# Compute inverse of sigmoid to find initial p value
initial_p_value = -_np.log(1 / initial_convex_par - 1)
elif initial_convex_par == 1:
# Same argument as for 0
initial_p_value = 16
else:
raise ValueError("Convex parameter must be <=1")
p = variables.Variable(
initial_value=initial_p_value, dtype=dtypes.float32, trainable=trainable
)
lam = math_ops.sigmoid(p)
return input_layer * lam + (1 - lam) * layer_3