-
-
Notifications
You must be signed in to change notification settings - Fork 637
/
Copy pathgradient-vanishing.py
80 lines (61 loc) · 2.63 KB
/
gradient-vanishing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np
import matplotlib.pyplot as plt
import math
tf.logging.set_verbosity(tf.logging.INFO)
#-----------------------------------------------
#variables
epoch = 2000
learningRate = 0.1
batch_size = 120
mnist_data = "C:/tmp/MNIST_data"
trainForRandomSet = True
#-----------------------------------------------
#data process and transformation
MNIST_DATASET = input_data.read_data_sets(mnist_data)
train_data = np.array(MNIST_DATASET.train.images, 'float32')
train_target = np.array(MNIST_DATASET.train.labels, 'int64')
print("training set consists of ", len(MNIST_DATASET.train.images), " instances")
test_data = np.array(MNIST_DATASET.test.images, 'float32')
test_target = np.array(MNIST_DATASET.test.labels, 'int64')
print("test set consists of ", len(MNIST_DATASET.test.images), " instances")
#-----------------------------------------------
#visualization
print("input layer consists of ", len(MNIST_DATASET.train.images[1])," features")
#-----------------------------------------------
feature_columns = [tf.contrib.layers.real_valued_column("", dimension=len(MNIST_DATASET.train.images[1]))]
classifier = tf.contrib.learn.DNNClassifier(
feature_columns=feature_columns
, n_classes=10 #0 to 9 - 10 classes
, hidden_units=[128, 64, 32, 16] #4 hidden layers consisting of 128, 64, 32, 16 units respectively
#, optimizer=tf.train.ProximalAdagradOptimizer(learning_rate=learningRate)
, optimizer=tf.train.GradientDescentOptimizer(learning_rate=learningRate)
, activation_fn = tf.nn.sigmoid #activate this to see vanishing gradient
#, activation_fn = tf.nn.relu #activate this to solve gradient vanishing problem
)
#----------------------------------------
#training
if trainForRandomSet == False:
#train on all trainset
classifier.fit(train_data, train_target, steps=epoch)
else:
def generate_input_fn(data, label):
image_batch, label_batch = tf.train.shuffle_batch(
[data, label]
, batch_size=batch_size
, capacity=8*batch_size
, min_after_dequeue=4*batch_size
, enqueue_many=True
)
return image_batch, label_batch
def input_fn_for_train():
return generate_input_fn(train_data, train_target)
#train on small random selected dataset
classifier.fit(input_fn=input_fn_for_train, steps=epoch)
print("\n---training is over...")
#----------------------------------------
#calculationg overall accuracy
accuracy_score = classifier.evaluate(test_data, test_target, steps=epoch)['accuracy']
print("\n---evaluation...")
print("accuracy: ", 100*accuracy_score,"%")