-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNLP.py
46 lines (35 loc) · 1.23 KB
/
NLP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# -*- coding: utf-8 -*-
"""
Created on Mon Jan 13 15:43:38 2025
@author: asus
"""
import numpy as np
import pandas as pd
reviews=pd.read_csv('reviews.txt',sep=';',names=['Review','Liked'])
import re
import nltk
from nltk.stem.porter import PorterStemmer
ps = PorterStemmer()
nltk.download('stopwords')
from nltk.corpus import stopwords
pl=[]
for i in range (1000):
review=re.sub('[^a-aZ-Z]',' ',reviews['Review'][i])
review=review.lower()
review=review.split()
review=[ps.stem(word) for word in review if not word in set(stopwords.words('english'))]
review=' '.join(review)
pl.append(review)
from sklearn.feature_extraction.text import CountVectorizer
cv=CountVectorizer(max_features=1000)
X=cv.fit_transform(pl).toarray()#bağımsız değişken
y=reviews.iloc[:,1].values#bağımlı değişken
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20, random_state = 0)
from sklearn.naive_bayes import GaussianNB
gnb = GaussianNB()
gnb.fit(X_train,y_train)
y_pred = gnb.predict(X_test)
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test,y_pred)
print(cm)