-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdecisiontreeprediction.py
52 lines (35 loc) · 1.19 KB
/
decisiontreeprediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# -*- coding: utf-8 -*-
"""
Created on Sat Jan 4 15:39:10 2025
@author: asus
"""
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
veriler=pd.read_csv('egitimseviyesitahmin.csv')
x=veriler.iloc[:,1:2]
y=veriler.iloc[:,2:]
X = x.values
Y = y.values
from sklearn.tree import DecisionTreeRegressor
r_dt=DecisionTreeRegressor(random_state=0)
r_dt.fit(X,Y)
plt.scatter(X,Y)
plt.show(plt.plot(X,r_dt.predict(X),color='r'))
print(r_dt.predict([[6.6]]))
print(r_dt.predict([[11]]))
from sklearn.ensemble import RandomForestRegressor
rf_reg=RandomForestRegressor(n_estimators=10,random_state=0)
rf_reg.fit(X,Y.ravel())
print(rf_reg.predict([[6.6]]))
plt.scatter(X,Y,color='red')
plt.show(plt.plot(X,rf_reg.predict(X),color='b'))
from sklearn.ensemble import RandomForestRegressor
rf_reg=RandomForestRegressor(n_estimators=5,random_state=0)
rf_reg.fit(X,Y.ravel())
print(rf_reg.predict([[6.6]]))
plt.scatter(X,Y,color='red')
plt.show(plt.plot(X,rf_reg.predict(X),color='b'))
##r square hata payının ölçümünü gösterir 1e yaklaştıka başarı yükselir
from sklearn.metrics import r2_score
print(r2_score(Y, rf_reg.predict(X)))