-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinearregresyonpredict.py
70 lines (34 loc) · 1.02 KB
/
linearregresyonpredict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# -*- coding: utf-8 -*-
"""
Spyder Editor
This is a temporary script file.
"""
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
##veriönisleme
veriler=pd.read_csv('aylaragöresatis.csv')
veriler
aylar=veriler[["Aylar"]]
aylar
satislar=veriler[["Satislar"]]
satislar
satislar2=veriler.iloc[:,0:1].values
satislar2
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(aylar,satislar,test_size=0.3,random_state=0)
from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
X_train=sc.fit_transform(x_train)
X_test=sc.fit_transform(x_test)
Y_train=sc.fit_transform(y_train)
Y_test=sc.fit_transform(y_test)
##model inşaası
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
tahmin=lr.predict(x_test)
x_train=x_train.sort_index()
y_train=y_train.sort_index()
plt.plot(x_train,y_train)
plt.plot(x_test,lr.predict(x_train))