-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathbaw.py
159 lines (132 loc) · 5.48 KB
/
baw.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
"""
Author: shifulin
Email: [email protected]
"""
from math import log, sqrt, exp, inf
from scipy.stats import norm
import scipy.optimize as opt
def bsm_call(s, k, sigma, t, r, q):
sqrt_t = sqrt(t)
d1 = (log(s / k) + (r - q + sigma ** 2 / 2.0) * t) / (sigma * sqrt_t)
d2 = d1 - sigma * sqrt_t
return s * exp(-q * t) * norm.cdf(d1) - k * exp(-r * t) * norm.cdf(d2)
def bsm_put(s, k, sigma, t, r, q):
sqrt_t = sqrt(t)
d1 = (log(s / k) + (r - q + sigma ** 2 / 2.0) * t) / (sigma * sqrt_t)
d2 = d1 - sigma * sqrt_t
return k * exp(-r * t) * norm.cdf(-d2) - s * exp(-q * t) * norm.cdf(-d1)
def find_sx(sx, k, sigma, t, r, q, option_type):
n = 2.0 * (r - q) / sigma ** 2
k_ = 2.0 * r / sigma ** 2 / (1.0 - exp(-r * t))
if sx < 0.0:
return inf
if option_type == 'Call':
q2 = (1.0 - n + sqrt((n - 1.0) ** 2 + 4.0 * k_)) / 2.0
return (bsm_call(sx, k, sigma, t, r, q) + (1.0 - exp(-q * t)
* norm.cdf((log(sx / k) + (r - q + sigma ** 2 / 2.0)) / (sigma * sqrt(t))))
* sx / q2 - sx + k) ** 2
else:
q1 = (1.0 - n - sqrt((n - 1.0) ** 2 + 4.0 * k_)) / 2.0
return (bsm_put(sx, k, sigma, t, r, q) - (1.0 - exp(-q * t)
* norm.cdf(-(log(sx / k) + (r - q + sigma ** 2 / 2.0)) / (sigma * sqrt(t))))
* sx / q1 + sx - k) ** 2
def baw_call(s, k, sigma, t, r, q=0.0):
c = bsm_call(s, k, sigma, t, r, q)
sx = opt.fmin(lambda i: find_sx(i, k, sigma, t, r, q, 'Call'), s)[0]
d1 = (log(sx / k) + (r - q + sigma ** 2 / 2.0)) / (sigma * sqrt(t))
n = 2.0 * (r - q) / sigma ** 2.0
k_ = 2.0 * r / (sigma ** 2 * (1.0 - exp(-r * t)))
q2 = (1.0 - n + sqrt((n - 1.0) ** 2 + 4.0 * k_)) / 2.0
a2 = sx * (1.0 - exp(-q * t) * norm.cdf(d1)) / q2
return c + a2 * (s / sx) ** q2 if s < sx else s - k
def baw_put(s, k, sigma, t, r, q=0.0):
p = bsm_put(s, k, sigma, t, r, q)
sx = opt.fmin(lambda i: find_sx(i, k, sigma, t, r, q, 'Put'), s)[0]
d1 = (log(sx / k) + (r - q + sigma ** 2 / 2.0)) / (sigma * sqrt(t))
n = 2.0 * (r - q) / sigma ** 2
k_ = 2.0 * r / (sigma ** 2 * (1.0 - exp(-r * t)))
q1 = (1.0 - n - sqrt((n - 1.0) ** 2 + 4.0 * k_)) / 2.0
a1 = -sx * (1.0 - exp(-q * t) * norm.cdf(-d1)) / q1
return p + a1 * (s / sx) ** q1 if s > sx else k - s
def call_iv(c, s, k, t, r=0.03, sigma_min=0.0001, sigma_max=3.0, e=0.00001):
sigma_mid = (sigma_min + sigma_max) / 2.0
call_min = bsm_call(s, k, sigma_min, t, r, 0.0)
call_max = bsm_call(s, k, sigma_max, t, r, 0.0)
call_mid = bsm_call(s, k, sigma_mid, t, r, 0.0)
diff = c - call_mid
if c <= call_min:
return sigma_min
elif c >= call_max:
return sigma_max
while abs(diff) > e:
if c > call_mid:
sigma_min = sigma_mid
else:
sigma_max = sigma_mid
sigma_mid = (sigma_min + sigma_max) / 2.0
call_mid = bsm_call(s, k, sigma_mid, t, r, 0.0)
diff = c - call_mid
return sigma_mid
def put_iv(c, s, k, t, r=0.03, sigma_min=0.0001, sigma_max=3.0, e=0.00001):
sigma_mid = (sigma_min + sigma_max) / 2.0
put_min = bsm_put(s, k, sigma_min, t, r, 0.0)
put_max = bsm_put(s, k, sigma_max, t, r, 0.0)
put_mid = bsm_put(s, k, sigma_mid, t, r, 0.0)
diff = c - put_mid
if c <= put_min:
return sigma_min
elif c >= put_max:
return sigma_max
while abs(diff) > e:
if c > put_mid:
sigma_min = sigma_mid
else:
sigma_max = sigma_mid
sigma_mid = (sigma_min + sigma_max) / 2.0
put_mid = bsm_put(s, k, sigma_mid, t, r, 0.0)
diff = c - put_mid
return sigma_mid
def delta(s, k, sigma, t, r, option_type):
if t == 0.0:
if s == k:
return 0.5 if option_type == 'Call' else -0.5
elif s > k:
return 1.0 if option_type == 'Call' else 0.0
else:
return 0.0 if option_type == 'Call' else -1.0
else:
price_func = baw_call if option_type == 'Call' else baw_put
return (price_func(s + 0.01, k, sigma, t, r) -
price_func(s - 0.01, k, sigma, t, r)) * 50.0
def gamma(s, k, sigma, t, r, option_type):
if t == 0.0:
return inf if s == k else 0.0
price_func = baw_call if option_type == 'Call' else baw_put
return (price_func(s + 0.01, k, sigma, t, r) +
price_func(s - 0.01, k, sigma, t, r) -
price_func(s, k, sigma, t, r) * 2.0) * 10000.0
def theta(s, k, sigma, t, r, option_type):
price_func = baw_call if option_type == 'Call' else baw_put
t_unit = 1.0 / 365.0
if t <= t_unit:
return price_func(s, k, sigma, 0.0001, r) - \
price_func(s, k, sigma, t, r)
else:
return price_func(s, k, sigma, t - t_unit, r) - \
price_func(s, k, sigma, t, r)
def vega(s, k, sigma, t, r, option_type):
price_func = baw_call if option_type == 'Call' else baw_put
if sigma < 0.02:
return 0.0
else:
return (price_func(s, k, sigma + 0.01, t, r) -
price_func(s, k, sigma - 0.01, t, r)) * 50.0
def rho(s, k, sigma, t, r, option_type):
price_func = baw_call if option_type == 'Call' else baw_put
return (price_func(s, k, sigma, t, r + 0.001,) -
price_func(s, k, sigma, t, r - 0.001,)) * 500.0
if __name__ == '__main__':
# print(baw_call(2707, 2900, 0.165, 78.0 / 365, 0.03, 0.0))
# print(baw_put(2710, 2750, 0.15, 78.0 / 365, 0.03, 0.0))
print(call_iv(24.0, 2710, 2900, 78.0 / 365))
print(put_iv(92.5, 2710, 2750, 78.0 / 365))