-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMH_MCMC_demo.py
111 lines (97 loc) · 3.49 KB
/
MH_MCMC_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import numpy as np
import matplotlib.pyplot as plt #plotting package
# Define the distribution to be sampled
def prob_dist1(x, p1, p2, A):
"""Gaussian distribution with mean mu,
Standard deviation sigma and 'amplitude' A
(A = 1 gives normalized gaussian.)"""
mu = p1
sigma = p2
chi_sq = 0.5*((x - mu)/sigma)**2
f = A*np.exp(-1.0*chi_sq)/(np.sqrt(2.0*np.pi)*sigma)
return f
def prob_dist2(x, p1, p2, A):
"""Sum of two Gaussian distribution with mean mu1 & mu2,
Standard deviation sigma1 & sigma2 and 'amplitudes' A1 & A2
(e.g. A1 = 0.5 & A2 = 0.5 gives normalized gaussian.)"""
A1 = 0.5
mu1 = p1
sigma1 = p2
chi_sq1 = 0.5*((x - mu1)/sigma1)**2
f1 = A1*np.exp(-1.0*chi_sq1)/(np.sqrt(2.0*np.pi)*sigma1)
A2 = 0.5
mu2 = p1 + 3*p2
sigma2 = p2*0.5
chi_sq2 = 0.5*((x - mu2)/sigma2)**2
f2 = A2*np.exp(-1.0*chi_sq2)/(np.sqrt(2.0*np.pi)*sigma2)
return f1 + f2
#parameter of the distribution to be sampled
p1 = 0.0
p2 = 1.0
A = 1.0 #for normalized gaussian distribution
fig = plt.figure(figsize=(8,6), dpi=100)
fig.add_subplot(111)
x = np.arange(-8*p2, 8*p2, 0.01)
plt.plot(x, prob_dist2(x, p1, p2, A), linewidth = 2.0, color = 'k')
#number of samples
nsample = 100
#Choose initial point to start the chain
theta_0 = 1.0
theta_i = theta_0
#Parameters of the proposal distribution
#In our example, standard deviation of the gaussian proposal distribution
sigma_p = 1.5
#Seed for random number generation while sampling
seed1 = 1012345
np.random.seed(seed = seed1)
#array to store total sample
total_sample = np.ndarray(shape = (nsample, 2))
#array to store accepted sample
acptd_sample = np.ndarray(shape = (nsample, 2))
#array to store the value of distribution function
f = np.ndarray(shape = (nsample, 1))
#Compute the function at the starting point
f[0] = prob_dist2(theta_i, p1, p2, A)
#Following loop does the Markov Chain Monte Carlo (MCMC)
#sampling of the distribution.
n_accept=0
for i in range(1, nsample,1):
#gaussian proposal distribution
theta_star = np.random.normal(loc = theta_i, scale = sigma_p, size = 1)
total_sample[i,:] = np.asarray([i, theta_star])
#Plot verticle line at proposed point, with red color
plt.vlines(theta_star, 0.0, 0.4, color = 'r', linewidth = 1.0)
plt.pause(1.0)
#Compute function at the proposed point
f_star = prob_dist2(theta_star, p1, p2, A)
#Metropolis rule
if f_star > f[i-1]:
#accept proposed point
theta_i = theta_star
acptd_sample[i,0] = i
acptd_sample[i,1] = theta_i
f[i] = f_star
n_accept += 1
plt.vlines(theta_star, 0.0, 0.5, color = 'g', linewidth = 1.0)
plt.pause(1.0)
else:
alpha = np.random.uniform(low=0.0, high=1.0, size=None)
ratio = f_star/f[i -1]
if ratio > alpha:
#accept proposed point
theta_i = theta_star
acptd_sample[i,:] = np.asarray([i, theta_i])
f[i] = f_star
n_accept += 1
plt.vlines(theta_star, 0.0, 0.5, color = 'g', linewidth = 1.0)
plt.pause(1.0)
else:
#reject proposed point
theta_i = theta_i #chain stays at the currant point.
#Currant (not the proposed) point is re-added to the accepted sample.
acptd_sample[i,:] = np.asarray([i, theta_i])
f[i] = f[i-1]
plt.vlines(theta_i, 0.0, 0.5, color = 'g', linewidth = 1.0)
plt.pause(1.0)
print("acceptance ratio:")
print(n_accept/(1.0*i))