forked from k2-fsa/icefall
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprepare_lm.sh
executable file
·264 lines (220 loc) · 7.72 KB
/
prepare_lm.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
#!/usr/bin/env bash
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
set -eou pipefail
# This script generate Ngram LM / NNLM and related files that needed by decoding.
# We assume dl_dir (download dir) contains the following
# directories and files. If not, they will be downloaded
# by this script automatically.
#
# - $dl_dir/lm
# This directory contains the following files downloaded from
# http://www.openslr.org/resources/11
#
# - 3-gram.pruned.1e-7.arpa.gz
# - 3-gram.pruned.1e-7.arpa
# - 4-gram.arpa.gz
# - 4-gram.arpa
# - librispeech-vocab.txt
# - librispeech-lexicon.txt
# - librispeech-lm-norm.txt.gz
#
. prepare.sh --stage -1 --stop-stage 6 || exit 1
log "Running prepare_lm.sh"
stage=0
stop_stage=100
. shared/parse_options.sh || exit 1
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "Stage 0: Prepare BPE based lexicon."
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}
# We reuse words.txt from phone based lexicon
# so that the two can share G.pt later.
cp data/lang_phone/words.txt $lang_dir
if [ ! -f $lang_dir/L_disambig.pt ]; then
./local/prepare_lang_bpe.py --lang-dir $lang_dir
log "Validating $lang_dir/lexicon.txt"
./local/validate_bpe_lexicon.py \
--lexicon $lang_dir/lexicon.txt \
--bpe-model $lang_dir/bpe.model
fi
if [ ! -f $lang_dir/L.fst ]; then
log "Converting L.pt to L.fst"
./shared/convert-k2-to-openfst.py \
--olabels aux_labels \
$lang_dir/L.pt \
$lang_dir/L.fst
fi
if [ ! -f $lang_dir/L_disambig.fst ]; then
log "Converting L_disambig.pt to L_disambig.fst"
./shared/convert-k2-to-openfst.py \
--olabels aux_labels \
$lang_dir/L_disambig.pt \
$lang_dir/L_disambig.fst
fi
done
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare word level G"
# We assume you have installed kaldilm, if not, please install
# it using: pip install kaldilm
mkdir -p data/lm
if [ ! -f data/lm/G_3_gram.fst.txt ]; then
# It is used in building HLG
python3 -m kaldilm \
--read-symbol-table="data/lang_phone/words.txt" \
--disambig-symbol='#0' \
--max-order=3 \
$dl_dir/lm/3-gram.pruned.1e-7.arpa > data/lm/G_3_gram.fst.txt
fi
if [ ! -f data/lm/G_4_gram.fst.txt ]; then
# It is used for LM rescoring
python3 -m kaldilm \
--read-symbol-table="data/lang_phone/words.txt" \
--disambig-symbol='#0' \
--max-order=4 \
$dl_dir/lm/4-gram.arpa > data/lm/G_4_gram.fst.txt
fi
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}
if [ ! -f $lang_dir/HL.fst ]; then
./local/prepare_lang_fst.py \
--lang-dir $lang_dir \
--ngram-G ./data/lm/G_3_gram.fst.txt
fi
done
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Compile HLG"
./local/compile_hlg.py --lang-dir data/lang_phone
# Note If ./local/compile_hlg.py throws OOM,
# please switch to the following command
#
# ./local/compile_hlg_using_openfst.py --lang-dir data/lang_phone
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}
./local/compile_hlg.py --lang-dir $lang_dir
# Note If ./local/compile_hlg.py throws OOM,
# please switch to the following command
#
# ./local/compile_hlg_using_openfst.py --lang-dir $lang_dir
done
fi
# Compile LG for RNN-T fast_beam_search decoding
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Compile LG"
./local/compile_lg.py --lang-dir data/lang_phone
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}
./local/compile_lg.py --lang-dir $lang_dir
done
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Prepare token level ngram G"
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}
if [ ! -f $lang_dir/transcript_tokens.txt ]; then
./local/convert_transcript_words_to_tokens.py \
--lexicon $lang_dir/lexicon.txt \
--transcript $lang_dir/transcript_words.txt \
--oov "<UNK>" \
> $lang_dir/transcript_tokens.txt
fi
for ngram in 2 3 4 5; do
if [ ! -f $lang_dir/${ngram}gram.arpa ]; then
./shared/make_kn_lm.py \
-ngram-order ${ngram} \
-text $lang_dir/transcript_tokens.txt \
-lm $lang_dir/${ngram}gram.arpa
fi
if [ ! -f $lang_dir/${ngram}gram.fst.txt ]; then
python3 -m kaldilm \
--read-symbol-table="$lang_dir/tokens.txt" \
--disambig-symbol='#0' \
--max-order=${ngram} \
$lang_dir/${ngram}gram.arpa > $lang_dir/${ngram}gram.fst.txt
fi
done
done
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Generate NNLM training data"
for vocab_size in ${vocab_sizes[@]}; do
log "Processing vocab_size == ${vocab_size}"
lang_dir=data/lang_bpe_${vocab_size}
out_dir=data/lm_training_bpe_${vocab_size}
mkdir -p $out_dir
./local/prepare_lm_training_data.py \
--bpe-model $lang_dir/bpe.model \
--lm-data $dl_dir/lm/librispeech-lm-norm.txt \
--lm-archive $out_dir/lm_data.pt
done
fi
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Generate NNLM validation data"
for vocab_size in ${vocab_sizes[@]}; do
log "Processing vocab_size == ${vocab_size}"
out_dir=data/lm_training_bpe_${vocab_size}
mkdir -p $out_dir
if [ ! -f $out_dir/valid.txt ]; then
files=$(
find "$dl_dir/LibriSpeech/dev-clean" -name "*.trans.txt"
find "$dl_dir/LibriSpeech/dev-other" -name "*.trans.txt"
)
for f in ${files[@]}; do
cat $f | cut -d " " -f 2-
done > $out_dir/valid.txt
fi
lang_dir=data/lang_bpe_${vocab_size}
./local/prepare_lm_training_data.py \
--bpe-model $lang_dir/bpe.model \
--lm-data $out_dir/valid.txt \
--lm-archive $out_dir/lm_data-valid.pt
done
fi
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
log "Stage 7: Generate NNLM test data"
for vocab_size in ${vocab_sizes[@]}; do
log "Processing vocab_size == ${vocab_size}"
out_dir=data/lm_training_bpe_${vocab_size}
mkdir -p $out_dir
if [ ! -f $out_dir/test.txt ]; then
files=$(
find "$dl_dir/LibriSpeech/test-clean" -name "*.trans.txt"
find "$dl_dir/LibriSpeech/test-other" -name "*.trans.txt"
)
for f in ${files[@]}; do
cat $f | cut -d " " -f 2-
done > $out_dir/test.txt
fi
lang_dir=data/lang_bpe_${vocab_size}
./local/prepare_lm_training_data.py \
--bpe-model $lang_dir/bpe.model \
--lm-data $out_dir/test.txt \
--lm-archive $out_dir/lm_data-test.pt
done
fi
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
log "Stage 8: Sort NNLM training data"
# Sort LM training data by sentence length in descending order
# for ease of training.
#
# Sentence length equals to the number of BPE tokens
# in a sentence.
for vocab_size in ${vocab_sizes[@]}; do
out_dir=data/lm_training_bpe_${vocab_size}
mkdir -p $out_dir
./local/sort_lm_training_data.py \
--in-lm-data $out_dir/lm_data.pt \
--out-lm-data $out_dir/sorted_lm_data.pt \
--out-statistics $out_dir/statistics.txt
./local/sort_lm_training_data.py \
--in-lm-data $out_dir/lm_data-valid.pt \
--out-lm-data $out_dir/sorted_lm_data-valid.pt \
--out-statistics $out_dir/statistics-valid.txt
./local/sort_lm_training_data.py \
--in-lm-data $out_dir/lm_data-test.pt \
--out-lm-data $out_dir/sorted_lm_data-test.pt \
--out-statistics $out_dir/statistics-test.txt
done
fi