forked from continuedev/continue
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.ts
962 lines (854 loc) · 27.2 KB
/
index.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
import { fetchwithRequestOptions } from "@continuedev/fetch";
import { findLlmInfo } from "@continuedev/llm-info";
import {
BaseLlmApi,
ChatCompletionCreateParams,
constructLlmApi,
} from "@continuedev/openai-adapters";
import Handlebars from "handlebars";
import {
CacheBehavior,
ChatMessage,
Chunk,
CompletionOptions,
ILLM,
LLMFullCompletionOptions,
LLMOptions,
ModelCapability,
PromptLog,
PromptTemplate,
RequestOptions,
TemplateType,
} from "../index.js";
import { logDevData } from "../util/devdata.js";
import { DevDataSqliteDb } from "../util/devdataSqlite.js";
import mergeJson from "../util/merge.js";
import { renderChatMessage } from "../util/messageContent.js";
import { isOllamaInstalled } from "../util/ollamaHelper.js";
import { Telemetry } from "../util/posthog.js";
import { withExponentialBackoff } from "../util/withExponentialBackoff.js";
import {
autodetectPromptTemplates,
autodetectTemplateFunction,
autodetectTemplateType,
modelSupportsImages,
} from "./autodetect.js";
import {
CONTEXT_LENGTH_FOR_MODEL,
DEFAULT_ARGS,
DEFAULT_CONTEXT_LENGTH,
DEFAULT_MAX_BATCH_SIZE,
DEFAULT_MAX_CHUNK_SIZE,
DEFAULT_MAX_TOKENS,
} from "./constants.js";
import {
compileChatMessages,
countTokens,
pruneRawPromptFromTop,
} from "./countTokens.js";
import {
fromChatCompletionChunk,
fromChatResponse,
LlmApiRequestType,
toChatBody,
toCompleteBody,
toFimBody,
} from "./openaiTypeConverters.js";
export abstract class BaseLLM implements ILLM {
static providerName: string;
static defaultOptions: Partial<LLMOptions> | undefined = undefined;
get providerName(): string {
return (this.constructor as typeof BaseLLM).providerName;
}
supportsFim(): boolean {
return false;
}
supportsImages(): boolean {
return modelSupportsImages(
this.providerName,
this.model,
this.title,
this.capabilities,
);
}
supportsCompletions(): boolean {
if (["openai", "azure"].includes(this.providerName)) {
if (
this.apiBase?.includes("api.groq.com") ||
this.apiBase?.includes("api.mistral.ai") ||
this.apiBase?.includes(":1337") ||
this.apiBase?.includes("integrate.api.nvidia.com") ||
this._llmOptions.useLegacyCompletionsEndpoint?.valueOf() === false
) {
// Jan + Groq + Mistral don't support completions : (
// Seems to be going out of style...
return false;
}
}
if (["groq", "mistral", "deepseek"].includes(this.providerName)) {
return false;
}
return true;
}
supportsPrefill(): boolean {
return ["ollama", "anthropic", "mistral"].includes(this.providerName);
}
uniqueId: string;
model: string;
title?: string;
systemMessage?: string;
contextLength: number;
maxStopWords?: number | undefined;
completionOptions: CompletionOptions;
requestOptions?: RequestOptions;
template?: TemplateType;
promptTemplates?: Record<string, PromptTemplate>;
templateMessages?: (messages: ChatMessage[]) => string;
writeLog?: (str: string) => Promise<void>;
llmRequestHook?: (model: string, prompt: string) => any;
apiKey?: string;
apiKeyLocation?: string;
apiBase?: string;
cacheBehavior?: CacheBehavior;
capabilities?: ModelCapability;
deployment?: string;
apiVersion?: string;
apiType?: string;
region?: string;
projectId?: string;
accountId?: string;
aiGatewaySlug?: string;
profile?: string | undefined;
// For IBM watsonx
deploymentId?: string;
// Embedding options
embeddingId: string;
maxEmbeddingChunkSize: number;
maxEmbeddingBatchSize: number;
private _llmOptions: LLMOptions;
protected openaiAdapter?: BaseLlmApi;
constructor(_options: LLMOptions) {
this._llmOptions = _options;
// Set default options
const options = {
title: (this.constructor as typeof BaseLLM).providerName,
...(this.constructor as typeof BaseLLM).defaultOptions,
..._options,
};
this.model = options.model;
// Use @continuedev/llm-info package to autodetect certain parameters
const llmInfo = findLlmInfo(this.model);
const templateType =
options.template ?? autodetectTemplateType(options.model);
this.title = options.title;
this.uniqueId = options.uniqueId ?? "None";
this.systemMessage = options.systemMessage;
this.contextLength =
options.contextLength ?? llmInfo?.contextLength ?? DEFAULT_CONTEXT_LENGTH;
this.maxStopWords = options.maxStopWords ?? this.maxStopWords;
this.completionOptions = {
...options.completionOptions,
model: options.model || "gpt-4",
maxTokens:
options.completionOptions?.maxTokens ??
(llmInfo?.maxCompletionTokens
? Math.min(
llmInfo.maxCompletionTokens,
// Even if the model has a large maxTokens, we don't want to use that every time,
// because it takes away from the context length
this.contextLength / 4,
)
: DEFAULT_MAX_TOKENS),
};
this.requestOptions = options.requestOptions;
this.promptTemplates = {
...autodetectPromptTemplates(options.model, templateType),
...options.promptTemplates,
};
this.templateMessages =
options.templateMessages ??
autodetectTemplateFunction(
options.model,
this.providerName,
options.template,
);
this.writeLog = options.writeLog;
this.llmRequestHook = options.llmRequestHook;
this.apiKey = options.apiKey;
this.apiKeyLocation = options.apiKeyLocation;
this.aiGatewaySlug = options.aiGatewaySlug;
this.apiBase = options.apiBase;
this.cacheBehavior = options.cacheBehavior;
// watsonx deploymentId
this.deploymentId = options.deploymentId;
if (this.apiBase && !this.apiBase.endsWith("/")) {
this.apiBase = `${this.apiBase}/`;
}
this.accountId = options.accountId;
this.capabilities = options.capabilities;
this.deployment = options.deployment;
this.apiVersion = options.apiVersion;
this.apiType = options.apiType;
this.region = options.region;
this.projectId = options.projectId;
this.profile = options.profile;
this.openaiAdapter = this.createOpenAiAdapter();
this.maxEmbeddingBatchSize =
options.maxEmbeddingBatchSize ?? DEFAULT_MAX_BATCH_SIZE;
this.maxEmbeddingChunkSize =
options.maxEmbeddingChunkSize ?? DEFAULT_MAX_CHUNK_SIZE;
this.embeddingId = `${this.constructor.name}::${this.model}::${this.maxEmbeddingChunkSize}`;
}
protected createOpenAiAdapter() {
return constructLlmApi({
provider: this.providerName as any,
apiKey: this.apiKey ?? "",
apiBase: this.apiBase,
requestOptions: this.requestOptions,
});
}
listModels(): Promise<string[]> {
return Promise.resolve([]);
}
private _compileChatMessages(
options: CompletionOptions,
messages: ChatMessage[],
functions?: any[],
) {
let contextLength = this.contextLength;
if (
options.model !== this.model &&
options.model in CONTEXT_LENGTH_FOR_MODEL
) {
contextLength =
CONTEXT_LENGTH_FOR_MODEL[options.model] || DEFAULT_CONTEXT_LENGTH;
}
return compileChatMessages(
options.model,
messages,
contextLength,
options.maxTokens ?? DEFAULT_MAX_TOKENS,
this.supportsImages(),
undefined,
functions,
this.systemMessage,
);
}
private _getSystemMessage(): string | undefined {
// TODO: Merge with config system message
return this.systemMessage;
}
private _templatePromptLikeMessages(prompt: string): string {
if (!this.templateMessages) {
return prompt;
}
const msgs: ChatMessage[] = [{ role: "user", content: prompt }];
const systemMessage = this._getSystemMessage();
if (systemMessage) {
msgs.unshift({ role: "system", content: systemMessage });
}
return this.templateMessages(msgs);
}
private _compileLogMessage(
prompt: string,
completionOptions: CompletionOptions,
): string {
const completionOptionsLog = JSON.stringify(
{
contextLength: this.contextLength,
...completionOptions,
},
null,
2,
);
let requestOptionsLog = "";
if (this.requestOptions) {
requestOptionsLog = JSON.stringify(this.requestOptions, null, 2);
}
return (
"##### Completion options #####\n" +
completionOptionsLog +
(requestOptionsLog
? "\n\n##### Request options #####\n" + requestOptionsLog
: "") +
"\n\n##### Prompt #####\n" +
prompt
);
}
private _logTokensGenerated(
model: string,
prompt: string,
completion: string,
) {
let promptTokens = this.countTokens(prompt);
let generatedTokens = this.countTokens(completion);
void Telemetry.capture(
"tokens_generated",
{
model: model,
provider: this.providerName,
promptTokens: promptTokens,
generatedTokens: generatedTokens,
},
true,
);
void DevDataSqliteDb.logTokensGenerated(
model,
this.providerName,
promptTokens,
generatedTokens,
);
logDevData("tokens_generated", {
model: model,
provider: this.providerName,
promptTokens: promptTokens,
generatedTokens: generatedTokens,
});
}
fetch(url: RequestInfo | URL, init?: RequestInit): Promise<Response> {
// Custom Node.js fetch
const customFetch = async (input: URL | RequestInfo, init: any) => {
try {
const resp = await fetchwithRequestOptions(
new URL(input as any),
{ ...init },
{ ...this.requestOptions },
);
// Error mapping to be more helpful
if (!resp.ok) {
let text = await resp.text();
if (resp.status === 404 && !resp.url.includes("/v1")) {
if (text.includes("try pulling it first")) {
const model = JSON.parse(text).error.split(" ")[1].slice(1, -1);
text = `The model "${model}" was not found. To download it, run \`ollama run ${model}\`.`;
} else if (text.includes("/api/chat")) {
text =
"The /api/chat endpoint was not found. This may mean that you are using an older version of Ollama that does not support /api/chat. Upgrading to the latest version will solve the issue.";
} else {
text =
"This may mean that you forgot to add '/v1' to the end of your 'apiBase' in config.json.";
}
} else if (
resp.status === 404 &&
resp.url.includes("api.openai.com")
) {
text =
"You may need to add pre-paid credits before using the OpenAI API.";
} else if (
resp.status === 401 &&
(resp.url.includes("api.mistral.ai") ||
resp.url.includes("codestral.mistral.ai"))
) {
if (resp.url.includes("codestral.mistral.ai")) {
throw new Error(
"You are using a Mistral API key, which is not compatible with the Codestral API. Please either obtain a Codestral API key, or use the Mistral API by setting 'apiBase' to 'https://api.mistral.ai/v1' in config.json.",
);
} else {
throw new Error(
"You are using a Codestral API key, which is not compatible with the Mistral API. Please either obtain a Mistral API key, or use the the Codestral API by setting 'apiBase' to 'https://codestral.mistral.ai/v1' in config.json.",
);
}
}
throw new Error(
`HTTP ${resp.status} ${resp.statusText} from ${resp.url}\n\n${text}`,
);
}
return resp;
} catch (e: any) {
// Errors to ignore
if (e.message.includes("/api/tags")) {
throw new Error(`Error fetching tags: ${e.message}`);
} else if (e.message.includes("/api/show")) {
throw new Error(
`HTTP ${e.response.status} ${e.response.statusText} from ${e.response.url}\n\n${e.response.body}`,
);
} else {
if (e.name !== "AbortError") {
// Don't pollute console with abort errors. Check on name instead of instanceof, to avoid importing node-fetch here
console.debug(
`${e.message}\n\nCode: ${e.code}\nError number: ${e.errno}\nSyscall: ${e.erroredSysCall}\nType: ${e.type}\n\n${e.stack}`,
);
}
if (
e.code === "ECONNREFUSED" &&
e.message.includes("http://127.0.0.1:11434")
) {
const message = (await isOllamaInstalled())
? "Unable to connect to local Ollama instance. Ollama may not be running."
: "Unable to connect to local Ollama instance. Ollama may not be installed or may not running.";
throw new Error(message);
}
}
throw new Error(e.message);
}
};
return withExponentialBackoff<Response>(
() => customFetch(url, init) as any,
5,
0.5,
);
}
private _parseCompletionOptions(options: LLMFullCompletionOptions) {
const log = options.log ?? true;
const raw = options.raw ?? false;
options.log = undefined;
const completionOptions: CompletionOptions = mergeJson(
this.completionOptions,
options,
);
return { completionOptions, log, raw };
}
private _formatChatMessages(messages: ChatMessage[]): string {
const msgsCopy = messages ? messages.map((msg) => ({ ...msg })) : [];
let formatted = "";
for (const msg of msgsCopy) {
let contentToShow = "";
if (msg.role === "tool") {
contentToShow = msg.content;
} else if (msg.role === "assistant" && msg.toolCalls) {
contentToShow = msg.toolCalls
?.map(
(toolCall) =>
`${toolCall.function?.name}(${toolCall.function?.arguments})`,
)
.join("\n");
} else if ("content" in msg && Array.isArray(msg.content)) {
const content = renderChatMessage(msg);
msg.content = content;
}
formatted += `<${msg.role}>\n${contentToShow}\n\n`;
}
return formatted;
}
protected async *_streamFim(
prefix: string,
suffix: string,
signal: AbortSignal,
options: CompletionOptions,
): AsyncGenerator<string, PromptLog> {
throw new Error("Not implemented");
}
protected useOpenAIAdapterFor: (LlmApiRequestType | "*")[] = [];
private shouldUseOpenAIAdapter(requestType: LlmApiRequestType) {
return (
this.useOpenAIAdapterFor.includes(requestType) ||
this.useOpenAIAdapterFor.includes("*")
);
}
async *streamFim(
prefix: string,
suffix: string,
signal: AbortSignal,
options: LLMFullCompletionOptions = {},
): AsyncGenerator<string> {
const { completionOptions, log } = this._parseCompletionOptions(options);
const fimLog = `Prefix: ${prefix}\nSuffix: ${suffix}`;
if (log) {
if (this.writeLog) {
await this.writeLog(this._compileLogMessage(fimLog, completionOptions));
}
if (this.llmRequestHook) {
this.llmRequestHook(completionOptions.model, fimLog);
}
}
let completion = "";
if (this.shouldUseOpenAIAdapter("streamFim") && this.openaiAdapter) {
const stream = this.openaiAdapter.fimStream(
toFimBody(prefix, suffix, completionOptions),
signal,
);
for await (const chunk of stream) {
const result = fromChatCompletionChunk(chunk);
if (result) {
const content = renderChatMessage(result);
completion += content;
yield content;
}
}
} else {
for await (const chunk of this._streamFim(
prefix,
suffix,
signal,
completionOptions,
)) {
completion += chunk;
yield chunk;
}
}
this._logTokensGenerated(completionOptions.model, fimLog, completion);
if (log && this.writeLog) {
await this.writeLog(`Completion:\n${completion}\n\n`);
}
return {
prompt: fimLog,
completion,
completionOptions,
};
}
async *streamComplete(
_prompt: string,
signal: AbortSignal,
options: LLMFullCompletionOptions = {},
) {
const { completionOptions, log, raw } =
this._parseCompletionOptions(options);
let prompt = pruneRawPromptFromTop(
completionOptions.model,
this.contextLength,
_prompt,
completionOptions.maxTokens ?? DEFAULT_MAX_TOKENS,
);
if (!raw) {
prompt = this._templatePromptLikeMessages(prompt);
}
if (log) {
if (this.writeLog) {
await this.writeLog(this._compileLogMessage(prompt, completionOptions));
}
if (this.llmRequestHook) {
this.llmRequestHook(completionOptions.model, prompt);
}
}
let completion = "";
try {
if (this.shouldUseOpenAIAdapter("streamComplete") && this.openaiAdapter) {
if (completionOptions.stream === false) {
// Stream false
const response = await this.openaiAdapter.completionNonStream(
{ ...toCompleteBody(prompt, completionOptions), stream: false },
signal,
);
completion = response.choices[0]?.text ?? "";
yield completion;
} else {
// Stream true
for await (const chunk of this.openaiAdapter.completionStream(
{
...toCompleteBody(prompt, completionOptions),
stream: true,
},
signal,
)) {
const content = chunk.choices[0]?.text ?? "";
completion += content;
yield content;
}
}
} else {
for await (const chunk of this._streamComplete(
prompt,
signal,
completionOptions,
)) {
completion += chunk;
yield chunk;
}
}
} finally {
this._logTokensGenerated(completionOptions.model, prompt, completion);
if (log && this.writeLog) {
await this.writeLog(`Completion:\n${completion}\n\n`);
}
}
return {
modelTitle: this.title ?? completionOptions.model,
prompt,
completion,
completionOptions,
};
}
async complete(
_prompt: string,
signal: AbortSignal,
options: LLMFullCompletionOptions = {},
) {
const { completionOptions, log, raw } =
this._parseCompletionOptions(options);
let prompt = pruneRawPromptFromTop(
completionOptions.model,
this.contextLength,
_prompt,
completionOptions.maxTokens ?? DEFAULT_MAX_TOKENS,
);
if (!raw) {
prompt = this._templatePromptLikeMessages(prompt);
}
if (log) {
if (this.writeLog) {
await this.writeLog(this._compileLogMessage(prompt, completionOptions));
}
if (this.llmRequestHook) {
this.llmRequestHook(completionOptions.model, prompt);
}
}
let completion: string;
if (this.shouldUseOpenAIAdapter("complete") && this.openaiAdapter) {
const result = await this.openaiAdapter.completionNonStream(
{
...toCompleteBody(prompt, completionOptions),
stream: false,
},
signal,
);
completion = result.choices[0].text;
} else {
completion = await this._complete(prompt, signal, completionOptions);
}
this._logTokensGenerated(completionOptions.model, prompt, completion);
if (log && this.writeLog) {
await this.writeLog(`Completion:\n${completion}\n\n`);
}
return completion;
}
async chat(
messages: ChatMessage[],
signal: AbortSignal,
options: LLMFullCompletionOptions = {},
) {
let completion = "";
for await (const chunk of this.streamChat(messages, signal, options)) {
completion += chunk.content;
}
return { role: "assistant" as const, content: completion };
}
protected modifyChatBody(
body: ChatCompletionCreateParams,
): ChatCompletionCreateParams {
return body;
}
private _modifyCompletionOptions(
completionOptions: CompletionOptions,
): CompletionOptions {
// As of 01/14/25 streaming is currently not available with o1
// See these threads:
// - https://github.com/continuedev/continue/issues/3698
// - https://community.openai.com/t/streaming-support-for-o1-o1-2024-12-17-resulting-in-400-unsupported-value/1085043
if (completionOptions.model === "o1") {
completionOptions.stream = false;
}
return completionOptions;
}
async *streamChat(
_messages: ChatMessage[],
signal: AbortSignal,
options: LLMFullCompletionOptions = {},
): AsyncGenerator<ChatMessage, PromptLog> {
let { completionOptions, log } = this._parseCompletionOptions(options);
completionOptions = this._modifyCompletionOptions(completionOptions);
const messages = this._compileChatMessages(completionOptions, _messages);
const prompt = this.templateMessages
? this.templateMessages(messages)
: this._formatChatMessages(messages);
if (log) {
if (this.writeLog) {
await this.writeLog(this._compileLogMessage(prompt, completionOptions));
}
if (this.llmRequestHook) {
this.llmRequestHook(completionOptions.model, prompt);
}
}
let completion = "";
try {
if (this.templateMessages) {
for await (const chunk of this._streamComplete(
prompt,
signal,
completionOptions,
)) {
completion += chunk;
yield { role: "assistant", content: chunk };
}
} else {
if (this.shouldUseOpenAIAdapter("streamChat") && this.openaiAdapter) {
let body = toChatBody(messages, completionOptions);
body = this.modifyChatBody(body);
if (completionOptions.stream === false) {
// Stream false
const response = await this.openaiAdapter.chatCompletionNonStream(
{ ...body, stream: false },
signal,
);
const msg = fromChatResponse(response);
yield msg;
completion = renderChatMessage(msg);
} else {
// Stream true
const stream = this.openaiAdapter.chatCompletionStream(
{
...body,
stream: true,
},
signal,
);
for await (const chunk of stream) {
const result = fromChatCompletionChunk(chunk);
if (result) {
yield result;
}
}
}
} else {
for await (const chunk of this._streamChat(
messages,
signal,
completionOptions,
)) {
completion += chunk.content;
yield chunk;
}
}
}
} catch (error) {
console.log(error);
throw error;
}
this._logTokensGenerated(completionOptions.model, prompt, completion);
if (log && this.writeLog) {
await this.writeLog(`Completion:\n${completion}\n\n`);
}
return {
modelTitle: this.title ?? completionOptions.model,
prompt,
completion,
completionOptions,
};
}
getBatchedChunks(chunks: string[]): string[][] {
const batchedChunks = [];
for (let i = 0; i < chunks.length; i += this.maxEmbeddingBatchSize) {
batchedChunks.push(chunks.slice(i, i + this.maxEmbeddingBatchSize));
}
return batchedChunks;
}
async embed(chunks: string[]): Promise<number[][]> {
const batches = this.getBatchedChunks(chunks);
return (
await Promise.all(
batches.map(async (batch) => {
if (batch.length === 0) {
return [];
}
const embeddings = await withExponentialBackoff<number[][]>(
async () => {
if (this.shouldUseOpenAIAdapter("embed") && this.openaiAdapter) {
const result = await this.openaiAdapter.embed({
model: this.model,
input: batch,
});
return result.data.map((chunk) => chunk.embedding);
}
return await this._embed(batch);
},
);
return embeddings;
}),
)
).flat();
}
async rerank(query: string, chunks: Chunk[]): Promise<number[]> {
if (this.shouldUseOpenAIAdapter("rerank") && this.openaiAdapter) {
const results = await this.openaiAdapter.rerank({
model: this.model,
query,
documents: chunks.map((chunk) => chunk.content),
});
// Put them in the order they were given
const sortedResults = results.data.sort((a, b) => a.index - b.index);
return sortedResults.map((result) => result.relevance_score);
}
throw new Error(
`Reranking is not supported for provider type ${this.providerName}`,
);
}
protected async *_streamComplete(
prompt: string,
signal: AbortSignal,
options: CompletionOptions,
): AsyncGenerator<string> {
throw new Error("Not implemented");
}
protected async *_streamChat(
messages: ChatMessage[],
signal: AbortSignal,
options: CompletionOptions,
): AsyncGenerator<ChatMessage> {
if (!this.templateMessages) {
throw new Error(
"You must either implement templateMessages or _streamChat",
);
}
for await (const chunk of this._streamComplete(
this.templateMessages(messages),
signal,
options,
)) {
yield { role: "assistant", content: chunk };
}
}
protected async _complete(
prompt: string,
signal: AbortSignal,
options: CompletionOptions,
) {
let completion = "";
for await (const chunk of this._streamComplete(prompt, signal, options)) {
completion += chunk;
}
return completion;
}
protected async _embed(chunks: string[]): Promise<number[][]> {
throw new Error(
`Embedding is not supported for provider type ${this.providerName}`,
);
}
countTokens(text: string): number {
return countTokens(text, this.model);
}
protected collectArgs(options: CompletionOptions): any {
return {
...DEFAULT_ARGS,
// model: this.model,
...options,
};
}
public renderPromptTemplate(
template: PromptTemplate,
history: ChatMessage[],
otherData: Record<string, string>,
canPutWordsInModelsMouth = false,
): string | ChatMessage[] {
if (typeof template === "string") {
const data: any = {
history: history,
...otherData,
};
if (history.length > 0 && history[0].role === "system") {
data.system_message = history.shift()!.content;
}
const compiledTemplate = Handlebars.compile(template);
return compiledTemplate(data);
}
const rendered = template(history, {
...otherData,
supportsCompletions: this.supportsCompletions() ? "true" : "false",
supportsPrefill: this.supportsPrefill() ? "true" : "false",
});
if (
typeof rendered !== "string" &&
rendered[rendered.length - 1]?.role === "assistant" &&
!canPutWordsInModelsMouth
) {
// Some providers don't allow you to put words in the model's mouth
// So we have to manually compile the prompt template and use
// raw /completions, not /chat/completions
const templateMessages = autodetectTemplateFunction(
this.model,
this.providerName,
autodetectTemplateType(this.model),
);
return templateMessages(rendered);
}
return rendered;
}
}