-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathresampler.py
195 lines (158 loc) · 6.29 KB
/
resampler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
#### Borrowed from https://github.com/tencent-ailab/IP-Adapter/blob/main/ip_adapter/resampler.py
# modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py
# and https://github.com/lucidrains/imagen-pytorch/blob/main/imagen_pytorch/imagen_pytorch.py
import math
import torch
import torch.nn as nn
from einops import rearrange
from einops.layers.torch import Rearrange
class FacePerceiverResampler(torch.nn.Module):
def __init__(
self,
*,
dim=768,
depth=4,
dim_head=64,
heads=16,
embedding_dim=1280,
output_dim=768,
ff_mult=4,
):
super().__init__()
self.proj_in = torch.nn.Linear(embedding_dim, dim)
self.proj_out = torch.nn.Linear(dim, output_dim)
self.norm_out = torch.nn.LayerNorm(output_dim)
self.layers = torch.nn.ModuleList([])
for _ in range(depth):
self.layers.append(
torch.nn.ModuleList(
[
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
FeedForward(dim=dim, mult=ff_mult),
]
)
)
def forward(self, latents, x):
x = self.proj_in(x)
for attn, ff in self.layers:
latents = attn(x, latents) + latents
latents = ff(latents) + latents
latents = self.proj_out(latents)
return self.norm_out(latents)
# FFN
def FeedForward(dim, mult=4):
inner_dim = int(dim * mult)
return nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, inner_dim, bias=False),
nn.GELU(),
nn.Linear(inner_dim, dim, bias=False),
)
def reshape_tensor(x, heads):
bs, length, width = x.shape
# (bs, length, width) --> (bs, length, n_heads, dim_per_head)
x = x.view(bs, length, heads, -1)
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
x = x.transpose(1, 2)
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
x = x.reshape(bs, heads, length, -1)
return x
class PerceiverAttention(nn.Module):
def __init__(self, *, dim, dim_head=64, heads=8):
super().__init__()
self.scale = dim_head**-0.5
self.dim_head = dim_head
self.heads = heads
inner_dim = dim_head * heads
self.norm1 = nn.LayerNorm(dim)
self.norm2 = nn.LayerNorm(dim)
self.to_q = nn.Linear(dim, inner_dim, bias=False)
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
self.to_out = nn.Linear(inner_dim, dim, bias=False)
def forward(self, x, latents):
"""
Args:
x (torch.Tensor): image features
shape (b, n1, D)
latent (torch.Tensor): latent features
shape (b, n2, D)
"""
x = self.norm1(x)
latents = self.norm2(latents)
b, l, _ = latents.shape
q = self.to_q(latents)
kv_input = torch.cat((x, latents), dim=-2)
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
q = reshape_tensor(q, self.heads)
k = reshape_tensor(k, self.heads)
v = reshape_tensor(v, self.heads)
# attention
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
out = weight @ v
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
return self.to_out(out)
class Resampler(nn.Module):
def __init__(
self,
dim=1024,
depth=8,
dim_head=64,
heads=16,
num_queries=8,
embedding_dim=768,
output_dim=1024,
ff_mult=4,
max_seq_len: int = 257, # CLIP tokens + CLS token
apply_pos_emb: bool = False,
num_latents_mean_pooled: int = 0, # number of latents derived from mean pooled representation of the sequence
):
super().__init__()
self.pos_emb = nn.Embedding(max_seq_len, embedding_dim) if apply_pos_emb else None
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
self.proj_in = nn.Linear(embedding_dim, dim)
self.proj_out = nn.Linear(dim, output_dim)
self.norm_out = nn.LayerNorm(output_dim)
self.to_latents_from_mean_pooled_seq = (
nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, dim * num_latents_mean_pooled),
Rearrange("b (n d) -> b n d", n=num_latents_mean_pooled),
)
if num_latents_mean_pooled > 0
else None
)
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(
nn.ModuleList(
[
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
FeedForward(dim=dim, mult=ff_mult),
]
)
)
def forward(self, x):
if self.pos_emb is not None:
n, device = x.shape[1], x.device
pos_emb = self.pos_emb(torch.arange(n, device=device))
x = x + pos_emb
latents = self.latents.repeat(x.size(0), 1, 1)
x = self.proj_in(x)
if self.to_latents_from_mean_pooled_seq:
meanpooled_seq = masked_mean(x, dim=1, mask=torch.ones(x.shape[:2], device=x.device, dtype=torch.bool))
meanpooled_latents = self.to_latents_from_mean_pooled_seq(meanpooled_seq)
latents = torch.cat((meanpooled_latents, latents), dim=-2)
for attn, ff in self.layers:
latents = attn(x, latents) + latents
latents = ff(latents) + latents
latents = self.proj_out(latents)
return self.norm_out(latents)
def masked_mean(t, *, dim, mask=None):
if mask is None:
return t.mean(dim=dim)
denom = mask.sum(dim=dim, keepdim=True)
mask = rearrange(mask, "b n -> b n 1")
masked_t = t.masked_fill(~mask, 0.0)
return masked_t.sum(dim=dim) / denom.clamp(min=1e-5)