Skip to content

Latest commit

 

History

History
66 lines (56 loc) · 2.64 KB

README.md

File metadata and controls

66 lines (56 loc) · 2.64 KB

Pothole Severity Classification via Computer Vision

The Project was build for the SMARTATHON Challenge 2023 theme 2 (Pothole Severity Classification via Computer Vision).

Instructions to run the code

Run this notebook.

        (or)           

Run it locally with the following instructions:

  • Clone the repository.
git clone https://github.com/shivankar-p/pothole.git
  • Go into the repository
cd pothole/src
  • Linux - Install metashape standalone module wheel File.(For other os find wheel file here
wget https://s3-eu-west-1.amazonaws.com/download.agisoft.com/Metashape-2.0.0-cp35.cp36.cp37.cp38-abi3-linux_x86_64.whl
python3 -m pip install Metashape-2.0.0-cp35.cp36.cp37.cp38-abi3-linux_x86_64.whl
  • Install other required packages
pip install -r requirements.txt
  • Inside the models folder(in src) download the model file from this link
  • Navigate back to src directory
  • For Inference on image run:
python3 mask.py --image <image-path>
  • For Inference on video run:
python3 mask.py --video <video-path>

Technologies used

  • python
  • Agiosoft Metashape
  • openCV
  • tensorflow
  • keras
  • matplotlib
  • numpy

Output Screenshots

3

1

Team