-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathClimate.html
376 lines (350 loc) · 83 KB
/
Climate.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
<!DOCTYPE html>
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<title>Chapter 6 Climate change risk | Perspectives in sustainable equity investing</title>
<meta name="author" content="Guillaume Coqueret">
<meta name="description" content=".container-fluid main { max-width: 55rem; font-size: 1rem; } “Climate risk is investment risk” (Scanlan (2021)). This chapter is dedicated to the perils of global warming and their impact on...">
<meta name="generator" content="bookdown 0.24 with bs4_book()">
<meta property="og:title" content="Chapter 6 Climate change risk | Perspectives in sustainable equity investing">
<meta property="og:type" content="book">
<meta property="og:description" content=".container-fluid main { max-width: 55rem; font-size: 1rem; } “Climate risk is investment risk” (Scanlan (2021)). This chapter is dedicated to the perils of global warming and their impact on...">
<meta name="twitter:card" content="summary">
<meta name="twitter:title" content="Chapter 6 Climate change risk | Perspectives in sustainable equity investing">
<meta name="twitter:description" content=".container-fluid main { max-width: 55rem; font-size: 1rem; } “Climate risk is investment risk” (Scanlan (2021)). This chapter is dedicated to the perils of global warming and their impact on...">
<!-- JS --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/6.4.6/fuse.js" integrity="sha512-zv6Ywkjyktsohkbp9bb45V6tEMoWhzFzXis+LrMehmJZZSys19Yxf1dopHx7WzIKxr5tK2dVcYmaCk2uqdjF4A==" crossorigin="anonymous"></script><script src="https://kit.fontawesome.com/6ecbd6c532.js" crossorigin="anonymous"></script><script src="libs/header-attrs-2.11/header-attrs.js"></script><script src="libs/jquery-3.6.0/jquery-3.6.0.min.js"></script><meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<link href="libs/bootstrap-4.6.0/bootstrap.min.css" rel="stylesheet">
<script src="libs/bootstrap-4.6.0/bootstrap.bundle.min.js"></script><script src="libs/bs3compat-0.3.1/transition.js"></script><script src="libs/bs3compat-0.3.1/tabs.js"></script><script src="libs/bs3compat-0.3.1/bs3compat.js"></script><link href="libs/bs4_book-1.0.0/bs4_book.css" rel="stylesheet">
<script src="libs/bs4_book-1.0.0/bs4_book.js"></script><script src="libs/htmlwidgets-1.5.4/htmlwidgets.js"></script><link href="libs/leaflet-1.3.1/leaflet.css" rel="stylesheet">
<script src="libs/leaflet-1.3.1/leaflet.js"></script><link href="libs/leafletfix-1.0.0/leafletfix.css" rel="stylesheet">
<script src="libs/proj4-2.6.2/proj4.min.js"></script><script src="libs/Proj4Leaflet-1.0.1/proj4leaflet.js"></script><link href="libs/rstudio_leaflet-1.3.1/rstudio_leaflet.css" rel="stylesheet">
<script src="libs/leaflet-binding-2.0.4.1/leaflet.js"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/autocomplete.js/0.38.0/autocomplete.jquery.min.js" integrity="sha512-GU9ayf+66Xx2TmpxqJpliWbT5PiGYxpaG8rfnBEk1LL8l1KGkRShhngwdXK1UgqhAzWpZHSiYPc09/NwDQIGyg==" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/mark.min.js" integrity="sha512-5CYOlHXGh6QpOFA/TeTylKLWfB3ftPsde7AnmhuitiTX4K5SqCLBeKro6sPS8ilsz1Q4NRx3v8Ko2IBiszzdww==" crossorigin="anonymous"></script><!-- CSS -->
</head>
<body data-spy="scroll" data-target="#toc">
<div class="container-fluid">
<div class="row">
<header class="col-sm-12 col-lg-3 sidebar sidebar-book"><a class="sr-only sr-only-focusable" href="#content">Skip to main content</a>
<div class="d-flex align-items-start justify-content-between">
<h1>
<a href="index.html" title="">Perspectives in sustainable equity investing</a>
</h1>
<button class="btn btn-outline-primary d-lg-none ml-2 mt-1" type="button" data-toggle="collapse" data-target="#main-nav" aria-expanded="true" aria-controls="main-nav"><i class="fas fa-bars"></i><span class="sr-only">Show table of contents</span></button>
</div>
<div id="main-nav" class="collapse-lg">
<form role="search">
<input id="search" class="form-control" type="search" placeholder="Search" aria-label="Search">
</form>
<nav aria-label="Table of contents"><h2>Table of contents</h2>
<ul class="book-toc list-unstyled">
<li><a class="" href="index.html"><span class="header-section-number">1</span> Introduction</a></li>
<li><a class="" href="ESGdata.html"><span class="header-section-number">2</span> ESG Data</a></li>
<li><a class="" href="Investors.html"><span class="header-section-number">3</span> Investors and SRI</a></li>
<li><a class="" href="Perf.html"><span class="header-section-number">4</span> ESG investing and financial performance</a></li>
<li><a class="" href="Quant.html"><span class="header-section-number">5</span> Quantitative portfolio construction with ESG data and criteria</a></li>
<li><a class="active" href="Climate.html"><span class="header-section-number">6</span> Climate change risk</a></li>
<li><a class="" href="Equilibrium.html"><span class="header-section-number">7</span> SRI in economic equilibria</a></li>
<li><a class="" href="Conc.html"><span class="header-section-number">8</span> Conclusion</a></li>
<li><a class="" href="Bib.html"><span class="header-section-number">9</span> Bibliography</a></li>
</ul>
<div class="book-extra">
</div>
</nav>
</div>
</header><main class="col-sm-12 col-md-9 col-lg-7" id="content"><div id="Climate" class="section level1" number="6">
<h1>
<span class="header-section-number">6</span> Climate change risk<a class="anchor" aria-label="anchor" href="#Climate"><i class="fas fa-link"></i></a>
</h1>
<style>
.container-fluid main {
max-width: 55rem;
font-size: 1rem;
}
</style>
<center>
<strong><em>“Climate risk is investment risk”</em></strong> (<span class="citation"><a href="Bib.html#ref-scanlan2020climate" role="doc-biblioref">Scanlan</a> (<a href="Bib.html#ref-scanlan2020climate" role="doc-biblioref">2021</a>)</span>).
</center>
<p>
</p>
<p>This chapter is dedicated to the perils of global warming and their impact on firms and on the financial market in general.<a class="footnote-ref" tabindex="0" data-toggle="popover" data-content='<p>Several theoretical references are postponed to Chapter <a href="Equilibrium.html#Equilibrium">7</a>.</p>'><sup>35</sup></a> The importance of this threat has long been mostly overlooked but is now even documented by governmental commissions in the US (see <span class="citation"><a href="Bib.html#ref-benham2020managing" role="doc-biblioref">Behnam et al.</a> (<a href="Bib.html#ref-benham2020managing" role="doc-biblioref">2020</a>)</span>). In fact, as early as the mid-1990s, <span class="citation"><a href="Bib.html#ref-porter1995toward" role="doc-biblioref">Porter and Van der Linde</a> (<a href="Bib.html#ref-porter1995toward" role="doc-biblioref">1995</a>)</span> called for a change of paradigm in the trade-off between environmental friendliness and competitiveness. At the time, the authors based their arguments on the need to incorporate innovation (and its dynamics) as a key variable. Nowadays, this trade-off seems more focused on long-term risks related to climate change (see, e.g., <span class="citation"><a href="Bib.html#ref-daniel2016applying" role="doc-biblioref">Daniel, Litterman, and Wagner</a> (<a href="Bib.html#ref-daniel2016applying" role="doc-biblioref">2018</a>)</span>, <span class="citation"><a href="Bib.html#ref-barnett2020pricing" role="doc-biblioref">M. Barnett, Brock, and Hansen</a> (<a href="Bib.html#ref-barnett2020pricing" role="doc-biblioref">2020</a>)</span>).</p>
<p>We start this chapter by simply quoting the provocative paper of <span class="citation"><a href="Bib.html#ref-mayer2019valuing" role="doc-biblioref">Mayer</a> (<a href="Bib.html#ref-mayer2019valuing" role="doc-biblioref">2019</a>)</span>: “<em>natural capital is very different from other forms of capital and arguably should not be viewed as a capital at all. Its distinctive features are its renewable and restorative properties, its irreversibility, its living and evolving nature, and the fact that it was inherited, not created, by humans</em>.” Climate risks are now documented and for instance surveyed in <span class="citation"><a href="Bib.html#ref-breitenstein2020environmental" role="doc-biblioref">Breitenstein, Nguyen, and Walther</a> (<a href="Bib.html#ref-breitenstein2020environmental" role="doc-biblioref">2021</a>)</span> and <span class="citation"><a href="Bib.html#ref-giglio2020climate" role="doc-biblioref">Giglio, Kelly, and Stroebel</a> (<a href="Bib.html#ref-giglio2020climate" role="doc-biblioref">2021</a>)</span>. Luckily, international cooperation on the matter seems to be intensifying (<span class="citation"><a href="Bib.html#ref-carattini2021does" role="doc-biblioref">Carattini et al.</a> (<a href="Bib.html#ref-carattini2021does" role="doc-biblioref">2021</a>)</span>)!</p>
<p>Nevertheless, in their survey of experts, <span class="citation"><a href="Bib.html#ref-stroebel2021you" role="doc-biblioref">Stroebel and Wurgler</a> (<a href="Bib.html#ref-stroebel2021you" role="doc-biblioref">2021</a>)</span> find that the latter overwhelmingly believe that asset prices underestimate climate risks. According to them, the short term risk is <strong>regulatory</strong> (e.g., benefits being curtailed by carbon taxes), while the long term risk is <strong>physical</strong> (e.g., natural disasters impacting production, transport, or consumption of goods). The regulatory risk, combined to risks related to shifts in consumer preferences for instance are aggregated into what are often referred to as <strong>transition risks</strong>.
These risk are tantamount for some sectors (e.g., fossil fuels), and the likelihood of stranded assets is for instance discussed in <span class="citation"><a href="Bib.html#ref-cahen2021capital" role="doc-biblioref">Cahen-Fourot et al.</a> (<a href="Bib.html#ref-cahen2021capital" role="doc-biblioref">2021</a>)</span>. The authors use input-output matrice to derive industry and country stranding multipliers. Counter-intuitively, the countries that are the most at risk are France, Australia and Slovakia, while those the least at risk are the USA, Italy and China. We refer to <span class="citation"><a href="Bib.html#ref-apel2021real" role="doc-biblioref">Apel, Betzer, and Scherer</a> (<a href="Bib.html#ref-apel2021real" role="doc-biblioref">2021</a>)</span> for a high frequency stock-specific analysis of transition risks.</p>
<p>This chapter is divided in four separate parts. The first part deals with discounting utility and cash flows in uncertain environments. The second part covers measurement issues in the assessment of climate change. The third part gives a quick overview of some macro-economic impacts of global warming. Finally, the last subsection demonstrates that investors increasingly care about these issues (which echoes Section <a href="Investors.html#invpref">3.1</a>).</p>
<div id="uncertain-discounting" class="section level2" number="6.1">
<h2>
<span class="header-section-number">6.1</span> Uncertain discounting<a class="anchor" aria-label="anchor" href="#uncertain-discounting"><i class="fas fa-link"></i></a>
</h2>
<p>
The mathematics-averse reader is advised to skip this subsection.</p>
<p>Discounting is a central topic in financial analysis because it translates the value of future flows into current units. Depending on preference and beliefs, discounting factors will alter expected cash flows and utility. In this subsection, we briefly recall how uncertainty may affect returns. We start by recalling the model of <span class="citation"><a href="Bib.html#ref-ramsey1928mathematical" role="doc-biblioref">Ramsey</a> (<a href="Bib.html#ref-ramsey1928mathematical" role="doc-biblioref">1928</a>)</span>.</p>
<p>An entity (individual or society) seeks to optimize a definition of global welfare</p>
<p><span class="math display">\[\begin{equation}
W=\sum_{t=0}^\infty \beta^tu(c_t),
\label{eq:ramsey0}
\end{equation}\]</span>
where <span class="math inline">\(u(\cdot)\)</span> is some utility function, <span class="math inline">\(c_t\)</span> is time-<span class="math inline">\(t\)</span> consumption, and <span class="math inline">\(\beta \in (0,1)\)</span> is the discounting intensity. A low beta signals a strong preference for the most imminent dates, while a high beta puts a higher weight on the distant future. Sometimes, the conventions <span class="math inline">\(\beta=(1+\rho)^{-1}\)</span> and <span class="math inline">\(\beta=e^{-\delta}\)</span> are used, in which case <span class="math inline">\(\rho\)</span> and <span class="math inline">\(\delta\)</span> are the discount rates. The entity</p>
<ul>
<li>has capital wealth <span class="math inline">\(k_t\)</span> which it can invest on a financial asset,</li>
<li>earns a wage <span class="math inline">\(w_t>0\)</span>, and</li>
<li>faces a budget constraint:<a class="footnote-ref" tabindex="0" data-toggle="popover" data-content='<p>Depending on how <span class="math inline">\(r_t\)</span> is defined (logarithmic versus arithmetic return), the following constraint can also be found in the litterature <span class="math inline">\(k_{t+1} = (1+r_t)k_t + w_t-c_t \ge 0\)</span>. In Equation <a href="Climate.html#eq:budgconst">(6.1)</a>, <span class="math inline">\(r_t\)</span> is the log return of the investment opportunity (on the financial market).</p>'><sup>36</sup></a>
<span class="math display" id="eq:budgconst">\[\begin{equation}
k_{t+1} = e^{r_t}k_t + w_t-c_t \ge 0,
\tag{6.1}
\end{equation}\]</span>
that is, future wealth equals wealth invested on the asset at (log-)rate <span class="math inline">\(r_t\)</span>, plus wage, minus consumption. It is naturally assumed that the wealth remains positive.</li>
</ul>
<p>The entity must choose the levels of investment <span class="math inline">\(k_t\)</span> and consumption <span class="math inline">\(c_t\)</span> to maximize the welfare <span class="math inline">\(W\)</span>. Taking into consideration two consecutive points in time, the (restricted) Lagrangian reads
<span class="math display">\[\begin{align}
\mathcal{L}= \ &\beta^t u(c_t) - \lambda_t(k_{t+1} - e^{r_t}k_t - w_t+c_t ) &(\text{time }t )\\
&+\beta^{t+1} u(c_{t+1}) - \lambda_{t+1}(k_{t+2} -e^{r_{t+1}}k_{t+1} - w_{t+1}+c_{t+1} ), &(\text{time }t+1 ) \nonumber
\label{eq:L}
\end{align}\]</span>
and the first-order conditions command
<span class="math display" id="eq:foc">\[\begin{equation}
\frac{\partial \mathcal{L}}{\partial c_t} = \beta^tu'(c_t)-\lambda_t=0, \quad \text{and }\quad \frac{\partial \mathcal{L}}{\partial k_{t+1}}= -\lambda_t+\lambda_{t+1}e^{r_{t+1}},
\tag{6.2}
\end{equation}\]</span>
and plugging the left part into the right one, this translates to
<span class="math display" id="eq:ramsey1">\[\begin{equation}
\beta^tu'(c_t)= \beta^{t+1}u'(c_{t+1})e^{r_{t+1}} \Longleftrightarrow \frac{u'(c_t)}{u'(c_{t+1})}=\beta e^{r_{t+1}}.
\tag{6.3}
\end{equation}\]</span>
This equation is a cornerstone of consumption-based asset pricing (see <span class="citation"><a href="Bib.html#ref-cochrane2009asset" role="doc-biblioref">Cochrane</a> (<a href="Bib.html#ref-cochrane2009asset" role="doc-biblioref">2009</a>)</span>) because it links returns to the ratio of marginal utilities (present versus future). While the asset pricing literature usually takes the route of the pricing kernel (or stochastic discount factor), we pursue the analysis as it is derived in economics.</p>
<p>Often, the utility function is chosen to be CRRA, so that <span class="math inline">\(u(x)=x^{1-\alpha}/(1-\alpha)\)</span>, for <span class="math inline">\(\alpha\)</span> strictly positive but not equal to one (in the latter case, the logarithmic function is used instead). In this case, with <span class="math inline">\(\beta=e^{-\delta}\)</span>, and
<span class="math display" id="eq:ramsey2">\[\begin{equation}
\left( \frac{c_t}{c_{t+1}}\right)^{-\alpha}= e^{r_{t+1}-\delta} \Longleftrightarrow r_{t+1}=\delta +\alpha \log \left(\frac{c_{t+1}}{c_t} \right).
\tag{6.4}
\end{equation}\]</span>
The above rate <span class="math inline">\(r_{t+1}\)</span> is sometimes referred to as the <strong>social discounting rate</strong> (SDR) in the public economics literature. It is such that the entity is indifferent between the two options:
- consume more at time <span class="math inline">\(t\)</span> and enjoy immediate utility or<br>
- reduce consumption and invest to gain more at time <span class="math inline">\(t+1\)</span>, with a discount of <span class="math inline">\(\delta\)</span>.</p>
<p>Another way to interpret the result is that the return on investment on the left-hand side in Equation <a href="Climate.html#eq:ramsey2">(6.4)</a> must be equal to the welfare-preserving inter-temporal trade-off on the consumption (right-hand side). If consumption growth increases, then the SDR should also increase, in order to cover the future consumption needs. The SDR is very important because it is a crucial component in the computation of the social cost of carbon (see <span class="citation"><a href="Bib.html#ref-anthoff2009discounting" role="doc-biblioref">Anthoff, Tol, and Yohe</a> (<a href="Bib.html#ref-anthoff2009discounting" role="doc-biblioref">2009</a>)</span> and Section <a href="Equilibrium.html#dice">7.2</a>). It is used to discount (in time) the welfare of a population, often by attenuating the importance of aggregate utility (based on consumption) as time passes. </p>
<p>One interesting extension of this model pertains to the alteration of this social discount rate when consumption growth is random.<a class="footnote-ref" tabindex="0" data-toggle="popover" data-content='<p>According to <span class="citation"><a href="Bib.html#ref-drupp2018discounting" role="doc-biblioref">Drupp et al.</a> (<a href="Bib.html#ref-drupp2018discounting" role="doc-biblioref">2018</a>)</span>, experts seem to agree that the simple Ramsey Equation <a href="Climate.html#eq:ramsey2">(6.4)</a> is too limited.</p>'><sup>37</sup></a> This idea has gained traction at least since <span class="citation"><a href="Bib.html#ref-gollier2002discounting" role="doc-biblioref">Gollier</a> (<a href="Bib.html#ref-gollier2002discounting" role="doc-biblioref">2002</a>)</span>, and they are applied to a climate change paradigm in <span class="citation"><a href="Bib.html#ref-gollier2013pricing" role="doc-biblioref">Gollier</a> (<a href="Bib.html#ref-gollier2013pricing" role="doc-biblioref">2013</a>)</span>).<a class="footnote-ref" tabindex="0" data-toggle="popover" data-content='<p>Further theoretical results in this vein can be found in <span class="citation"><a href="Bib.html#ref-gollier2008discounting" role="doc-biblioref">Gollier</a> (<a href="Bib.html#ref-gollier2008discounting" role="doc-biblioref">2008</a>)</span>, <span class="citation"><a href="Bib.html#ref-traeger2014uncertainty" role="doc-biblioref">Traeger</a> (<a href="Bib.html#ref-traeger2014uncertainty" role="doc-biblioref">2014</a>)</span> and <span class="citation"><a href="Bib.html#ref-fleurbaey2015discounting" role="doc-biblioref">Fleurbaey and Zuber</a> (<a href="Bib.html#ref-fleurbaey2015discounting" role="doc-biblioref">2015</a>)</span>. Applications to the impact of climate change on the economy have spawned a rich body of articles. Here are a few: <span class="citation"><a href="Bib.html#ref-howarth2003discounting" role="doc-biblioref">Howarth</a> (<a href="Bib.html#ref-howarth2003discounting" role="doc-biblioref">2003</a>)</span>, <span class="citation"><a href="Bib.html#ref-dasgupta2008discounting" role="doc-biblioref">Dasgupta</a> (<a href="Bib.html#ref-dasgupta2008discounting" role="doc-biblioref">2008</a>)</span>, and the review by <span class="citation"><a href="Bib.html#ref-heal2009climate" role="doc-biblioref">Heal</a> (<a href="Bib.html#ref-heal2009climate" role="doc-biblioref">2009</a>)</span>.</p>'><sup>38</sup></a> Let us assume that <span class="math inline">\(g_{t+1}=\log(c_{t+1}/c_t)\)</span> is Gaussian with mean <span class="math inline">\(\mu\)</span> and variance <span class="math inline">\(\sigma^2\)</span>. Under CRRA preferences, at time <span class="math inline">\(t\)</span>, we can take the expectation of Equation <a href="Climate.html#eq:ramsey1">(6.3)</a> as follows:
<span class="math display" id="eq:ramsey4">\[\begin{equation}
e^{\delta-r_{t+1}}=\mathbb{E}[e^{-\alpha g_{t+1}} ] \Longrightarrow r_{t+1}=\delta +\alpha \mu-\alpha^2 \frac{\sigma^2}{2},
\tag{6.5}
\end{equation}\]</span>
which means that uncertainty in future consumption decreases the return. Straightforwardly, any investor prefers <em>less</em> risk. For the interested reader, we recommend a few additional references on the topic of climate economics: <span class="citation"><a href="Bib.html#ref-ackerman2009limitations" role="doc-biblioref">Ackerman et al.</a> (<a href="Bib.html#ref-ackerman2009limitations" role="doc-biblioref">2009</a>)</span>, <span class="citation"><a href="Bib.html#ref-heal2009climate" role="doc-biblioref">Heal</a> (<a href="Bib.html#ref-heal2009climate" role="doc-biblioref">2009</a>)</span>, <span class="citation"><a href="Bib.html#ref-weitzman2009modeling" role="doc-biblioref">Weitzman</a> (<a href="Bib.html#ref-weitzman2009modeling" role="doc-biblioref">2009</a>)</span>, and, more recently, <span class="citation"><a href="Bib.html#ref-gollier2021cost" role="doc-biblioref">Gollier</a> (<a href="Bib.html#ref-gollier2021cost" role="doc-biblioref">2021</a>)</span> on the topic of carbon prices. For a recent discussion on estimation issues, we point to <span class="citation"><a href="Bib.html#ref-newell2021discounting" role="doc-biblioref">Newell, Pizer, and Prest</a> (<a href="Bib.html#ref-newell2021discounting" role="doc-biblioref">2021</a>)</span>.</p>
<p>Lastly, on a related issue, <span class="citation"><a href="Bib.html#ref-gelrud2021discounting" role="doc-biblioref">Gelrud</a> (<a href="Bib.html#ref-gelrud2021discounting" role="doc-biblioref">2021</a>)</span> produces a theoretical model aimed at quantifying the rate at which climate change mitigation project should be discounted. The authors shows that this rate should be smaller than the risk free rate - and that it is optimal to invest in such projects as fast as possible.</p>
</div>
<div id="measurement" class="section level2" number="6.2">
<h2>
<span class="header-section-number">6.2</span> Measurement issues<a class="anchor" aria-label="anchor" href="#measurement"><i class="fas fa-link"></i></a>
</h2>
<p>
In order to quantify the risk of global warming, it is first imperative to define which variables drive the externalities. They can be direct measurements of the underlying phenomenon (e.g., local or aggregate temperatures and rainfall), or time-series of potential drivers thereof (greenhouse gas (GHG) and carbon dioxide (CO<span class="math inline">\(_2\)</span>) emissions). In addition to measuring, it is also useful to predict or even nowcast such quantities: see <span class="citation"><a href="Bib.html#ref-bennedsen2021modeling" role="doc-biblioref">Bennedsen, Hillebrand, and Koopman</a> (<a href="Bib.html#ref-bennedsen2021modeling" role="doc-biblioref">2021</a>)</span> for a methodology on CO<span class="math inline">\(_2\)</span> emissions. Prediction models are important because they seem to drive market participants’ expectations (<span class="citation"><a href="Bib.html#ref-schlenker2021market" role="doc-biblioref">Schlenker and Taylor</a> (<a href="Bib.html#ref-schlenker2021market" role="doc-biblioref">2021</a>)</span>). International groups, such as the Intergovernmental Panel on Climate Change (IPCC) periodically disclose in-depth studies that contain numerous estimates on past, present and future indicators (emissions, temperatures, precipitations). On the topic of climate data, we also refer to <span class="citation"><a href="Bib.html#ref-tankov2019climate" role="doc-biblioref">Tankov and Tantet</a> (<a href="Bib.html#ref-tankov2019climate" role="doc-biblioref">2019</a>)</span> for a very enlightening discussion on the dimensions and stakes for financial agents. </p>
<p>
Measuring and reporting climate-related indicators requires resources, which is why it is often performed by national or international research centers. Per se, the equipment (thermometers, CO<span class="math inline">\(_2\)</span> sensors, etc.) are not particularly expensive. It is keeping track of trustworthy measurements over long time ranges which is costly. With regard to the evolution of CO<span class="math inline">\(_2\)</span>, one benchmark is the measurement by the US Earth System Research Laboratories near the summit of the Mauna Loa volcano.<a class="footnote-ref" tabindex="0" data-toggle="popover" data-content='<p>Technical details on the measurement can be found in <span class="citation"><a href="Bib.html#ref-zhao2006estimating" role="doc-biblioref">C. L. Zhao and Tans</a> (<a href="Bib.html#ref-zhao2006estimating" role="doc-biblioref">2006</a>)</span>.</p>'><sup>39</sup></a> The corresponding time-series is shown in the top panel of Figure <a href="Climate.html#fig:climate">6.1</a> and shows an indisputable trend. </p>
<div class="sourceCode" id="cb14"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="va">link</span> <span class="op"><-</span> <span class="st">"ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_mm_mlo.txt"</span> <span class="co"># Link for C02 data</span>
<span class="va">co2</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/utils/read.table.html">read.table</a></span><span class="op">(</span><span class="va">link</span><span class="op">)</span> <span class="co"># Read data</span>
<span class="va">co2</span> <span class="op"><-</span> <span class="va">co2</span><span class="op">[</span>,<span class="fu"><a href="https://rdrr.io/r/base/c.html">c</a></span><span class="op">(</span><span class="fl">1</span>,<span class="fl">2</span>,<span class="fl">4</span><span class="op">)</span><span class="op">]</span> <span class="co"># Keep relevant columns</span>
<span class="fu"><a href="https://rdrr.io/r/base/colnames.html">colnames</a></span><span class="op">(</span><span class="va">co2</span><span class="op">)</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html">c</a></span><span class="op">(</span><span class="st">"Year"</span>, <span class="st">"Month"</span>, <span class="st">"CO2_concentration"</span><span class="op">)</span> <span class="co"># Rename columns</span>
<span class="co"># link for temperature anomalies</span>
<span class="va">link</span> <span class="op"><-</span> <span class="st">"https://www.ncdc.noaa.gov/cag/global/time-series/globe/land_ocean/1/9/1880-2021/data.csv"</span>
<span class="va">anomaly</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/pkg/readr/man/read_delim.html">read_csv</a></span><span class="op">(</span><span class="va">link</span>, skip <span class="op">=</span> <span class="fl">4</span><span class="op">)</span> <span class="co"># Read data</span>
<span class="va">g1</span> <span class="op"><-</span> <span class="va">co2</span> <span class="op"><a href="https://rdrr.io/pkg/magrittr/man/pipe.html">%>%</a></span>
<span class="fu"><a href="https://rdrr.io/pkg/dplyr/man/mutate.html">mutate</a></span><span class="op">(</span>date <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/pkg/lubridate/man/make_datetime.html">make_date</a></span><span class="op">(</span>year <span class="op">=</span> <span class="va">Year</span>, month <span class="op">=</span> <span class="va">Month</span>, day <span class="op">=</span> <span class="fl">15</span><span class="op">)</span><span class="op">)</span> <span class="op"><a href="https://rdrr.io/pkg/magrittr/man/pipe.html">%>%</a></span>
<span class="fu"><a href="https://rdrr.io/pkg/ggplot2/man/ggplot.html">ggplot</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/pkg/ggplot2/man/aes.html">aes</a></span><span class="op">(</span>x <span class="op">=</span> <span class="va">date</span>, y <span class="op">=</span> <span class="va">CO2_concentration</span><span class="op">)</span><span class="op">)</span> <span class="op">+</span>
<span class="fu"><a href="https://rdrr.io/pkg/ggplot2/man/scale_date.html">scale_x_date</a></span><span class="op">(</span>limits <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html">c</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/pkg/zoo/man/yearmon.html">as.Date</a></span><span class="op">(</span><span class="st">"1880-01-01"</span><span class="op">)</span>, <span class="fu"><a href="https://rdrr.io/pkg/zoo/man/yearmon.html">as.Date</a></span><span class="op">(</span><span class="st">"2021-06-30"</span><span class="op">)</span><span class="op">)</span><span class="op">)</span> <span class="op">+</span>
<span class="fu"><a href="https://rdrr.io/pkg/ggplot2/man/geom_path.html">geom_line</a></span><span class="op">(</span><span class="op">)</span> <span class="op">+</span> <span class="fu"><a href="https://rdrr.io/pkg/ggplot2/man/geom_smooth.html">geom_smooth</a></span><span class="op">(</span>color <span class="op">=</span> <span class="st">"red"</span><span class="op">)</span> <span class="op">+</span>
<span class="fu"><a href="https://rdrr.io/pkg/ggplot2/man/ggtheme.html">theme_minimal</a></span><span class="op">(</span><span class="op">)</span> <span class="op">+</span> <span class="fu"><a href="https://rdrr.io/pkg/ggplot2/man/theme.html">theme</a></span><span class="op">(</span>axis.title.x <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/pkg/ggplot2/man/element.html">element_blank</a></span><span class="op">(</span><span class="op">)</span><span class="op">)</span> <span class="op">+</span>
<span class="fu"><a href="https://rdrr.io/pkg/ggplot2/man/labs.html">ylab</a></span><span class="op">(</span><span class="st">"CO2 concentration (ppm)"</span><span class="op">)</span> <span class="op">+</span>
<span class="fu"><a href="https://rdrr.io/pkg/ggplot2/man/annotate.html">annotate</a></span><span class="op">(</span><span class="st">"text"</span>, label <span class="op">=</span> <span class="st">"Data not available"</span>, x <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/pkg/zoo/man/yearmon.html">as.Date</a></span><span class="op">(</span><span class="st">"1920-01-01"</span><span class="op">)</span>, y <span class="op">=</span> <span class="fl">320</span><span class="op">)</span>
<span class="va">g2</span> <span class="op"><-</span> <span class="va">anomaly</span> <span class="op"><a href="https://rdrr.io/pkg/magrittr/man/pipe.html">%>%</a></span>
<span class="fu"><a href="https://rdrr.io/pkg/ggplot2/man/ggplot.html">ggplot</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/pkg/ggplot2/man/aes.html">aes</a></span><span class="op">(</span>x <span class="op">=</span> <span class="va">Year</span>, y <span class="op">=</span> <span class="va">Value</span><span class="op">)</span><span class="op">)</span> <span class="op">+</span>
<span class="fu"><a href="https://rdrr.io/pkg/ggplot2/man/geom_path.html">geom_line</a></span><span class="op">(</span><span class="op">)</span> <span class="op">+</span> <span class="fu"><a href="https://rdrr.io/pkg/ggplot2/man/geom_smooth.html">geom_smooth</a></span><span class="op">(</span><span class="op">)</span> <span class="op">+</span> <span class="fu"><a href="https://rdrr.io/pkg/ggplot2/man/ggtheme.html">theme_minimal</a></span><span class="op">(</span><span class="op">)</span> <span class="op">+</span>
<span class="fu"><a href="https://rdrr.io/pkg/ggplot2/man/theme.html">theme</a></span><span class="op">(</span>axis.title.x <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/pkg/ggplot2/man/element.html">element_blank</a></span><span class="op">(</span><span class="op">)</span><span class="op">)</span> <span class="op">+</span>
<span class="fu"><a href="https://rdrr.io/pkg/ggplot2/man/labs.html">ylab</a></span><span class="op">(</span><span class="st">"Temperature anomaly"</span><span class="op">)</span>
<span class="va">g1</span> <span class="op">/</span> <span class="va">g2</span></code></pre></div>
<div class="figure">
<span style="display:block;" id="fig:climate"></span>
<img src="ESG_p_files/figure-html/climate-1.png" alt="Sample of climate related time-series. We plot atmospheric CO$_2$ levels along with global temperature trends over the period 1960–2021. The data was gathered from the National Oceanic and Atmospheric Administration (NOAA) website." width="672"><p class="caption">
FIGURE 6.1: Sample of climate related time-series. We plot atmospheric CO<span class="math inline">\(_2\)</span> levels along with global temperature trends over the period 1960–2021. The data was gathered from the National Oceanic and Atmospheric Administration (NOAA) website.
</p>
</div>
<p>Recent initiatives propose measures at a more granular (i.e., local) level, see for instance <span class="citation"><a href="Bib.html#ref-liu2020covid" role="doc-biblioref">Z. Liu et al.</a> (<a href="Bib.html#ref-liu2020covid" role="doc-biblioref">2020</a>)</span> and <span class="citation"><a href="Bib.html#ref-dou2021global" role="doc-biblioref">Dou et al.</a> (<a href="Bib.html#ref-dou2021global" role="doc-biblioref">2021</a>)</span> as well as the website <a href="https://carbonmonitor.org" class="uri">https://carbonmonitor.org</a>, as well as <a href="http://www.climateestimate.net" class="uri">http://www.climateestimate.net</a>. The latter proposes code snippets in R, Python and MATLAB.
This allows to track emissions at the country and sector level and we provide a sample of trajectories for 2019-2021 in Figure <a href="Climate.html#fig:climate2">6.2</a>. Clearly, the reduction in emissions appears in China (which was hit earlier) a few weeks before Europe and the US for aviation and ground transport. For industry and power, the impact is more pronounced for China, but the rebound is also marked.</p>
<div class="sourceCode" id="cb15"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="va">url</span> <span class="op">=</span> <span class="st">'https://raw.githubusercontent.com/shokru/esgperspectives.github.io/main/data/carbonmonitor.csv'</span>
<span class="va">carbon</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/utils/read.table.html">read.csv</a></span><span class="op">(</span><span class="va">url</span><span class="op">)</span>
<span class="fu"><a href="https://rdrr.io/r/base/colnames.html">colnames</a></span><span class="op">(</span><span class="va">carbon</span><span class="op">)</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html">c</a></span><span class="op">(</span><span class="st">"zone"</span>, <span class="st">"date"</span>, <span class="st">"sector"</span>, <span class="st">"MtCO2"</span>, <span class="st">"timestamp"</span><span class="op">)</span>
<span class="va">carbon</span> <span class="op"><-</span> <span class="va">carbon</span> <span class="op"><a href="https://rdrr.io/pkg/magrittr/man/pipe.html">%>%</a></span> <span class="fu"><a href="https://rdrr.io/pkg/dplyr/man/mutate.html">mutate</a></span><span class="op">(</span>date <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/pkg/zoo/man/yearmon.html">as.Date</a></span><span class="op">(</span><span class="va">date</span>, format <span class="op">=</span> <span class="st">"%d/%m/%Y"</span><span class="op">)</span><span class="op">)</span>
<span class="va">carbon</span> <span class="op"><a href="https://rdrr.io/pkg/magrittr/man/pipe.html">%>%</a></span>
<span class="fu"><a href="https://rdrr.io/pkg/dplyr/man/filter.html">filter</a></span><span class="op">(</span><span class="va">zone</span> <span class="op"><a href="https://rdrr.io/r/base/match.html">%in%</a></span> <span class="fu"><a href="https://rdrr.io/r/base/c.html">c</a></span><span class="op">(</span><span class="st">"US"</span>, <span class="st">"China"</span>, <span class="st">"EU27 & UK"</span><span class="op">)</span><span class="op">)</span> <span class="op"><a href="https://rdrr.io/pkg/magrittr/man/pipe.html">%>%</a></span>
<span class="fu"><a href="https://rdrr.io/pkg/dplyr/man/mutate.html">mutate</a></span><span class="op">(</span>month <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/pkg/lubridate/man/month.html">month</a></span><span class="op">(</span><span class="va">date</span><span class="op">)</span>, year <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/pkg/lubridate/man/year.html">year</a></span><span class="op">(</span><span class="va">date</span><span class="op">)</span><span class="op">)</span> <span class="op"><a href="https://rdrr.io/pkg/magrittr/man/pipe.html">%>%</a></span>
<span class="fu"><a href="https://rdrr.io/pkg/dplyr/man/group_by.html">group_by</a></span><span class="op">(</span><span class="va">zone</span>, <span class="va">sector</span>, <span class="va">month</span>, <span class="va">year</span><span class="op">)</span> <span class="op"><a href="https://rdrr.io/pkg/magrittr/man/pipe.html">%>%</a></span>
<span class="fu"><a href="https://rdrr.io/pkg/dplyr/man/mutate.html">mutate</a></span><span class="op">(</span>avg_CO2 <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/sum.html">sum</a></span><span class="op">(</span><span class="va">MtCO2</span>, na.rm<span class="op">=</span><span class="cn">T</span><span class="op">)</span><span class="op">)</span> <span class="op"><a href="https://rdrr.io/pkg/magrittr/man/pipe.html">%>%</a></span>
<span class="fu"><a href="https://rdrr.io/pkg/ggplot2/man/ggplot.html">ggplot</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/pkg/ggplot2/man/aes.html">aes</a></span><span class="op">(</span>x <span class="op">=</span> <span class="va">date</span>, y <span class="op">=</span> <span class="va">avg_CO2</span>, color <span class="op">=</span> <span class="va">zone</span>, linetype <span class="op">=</span> <span class="va">zone</span><span class="op">)</span><span class="op">)</span> <span class="op">+</span>
<span class="fu"><a href="https://rdrr.io/pkg/ggplot2/man/geom_path.html">geom_line</a></span><span class="op">(</span><span class="op">)</span> <span class="op">+</span>
<span class="fu"><a href="https://rdrr.io/pkg/ggplot2/man/geom_abline.html">geom_vline</a></span><span class="op">(</span>xintercept <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/numeric.html">as.numeric</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/pkg/zoo/man/yearmon.html">as.Date</a></span><span class="op">(</span><span class="st">"2020-01-13"</span><span class="op">)</span><span class="op">)</span>, linetype <span class="op">=</span> <span class="fl">2</span>, size <span class="op">=</span> <span class="fl">1.2</span><span class="op">)</span> <span class="op">+</span>
<span class="fu"><a href="https://rdrr.io/pkg/ggplot2/man/geom_path.html">geom_line</a></span><span class="op">(</span><span class="op">)</span> <span class="op">+</span> <span class="fu"><a href="https://rdrr.io/pkg/ggplot2/man/ggtheme.html">theme_light</a></span><span class="op">(</span><span class="op">)</span> <span class="op">+</span>
<span class="fu"><a href="https://rdrr.io/pkg/ggplot2/man/facet_wrap.html">facet_wrap</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/pkg/ggplot2/man/vars.html">vars</a></span><span class="op">(</span><span class="va">sector</span><span class="op">)</span>, ncol <span class="op">=</span> <span class="fl">2</span>, scales <span class="op">=</span> <span class="st">"free"</span><span class="op">)</span> <span class="op">+</span> <span class="fu"><a href="https://rdrr.io/pkg/ggplot2/man/labs.html">ylab</a></span><span class="op">(</span><span class="st">"Monthly CO2 metric tons per capita"</span><span class="op">)</span> <span class="op">+</span>
<span class="fu"><a href="https://rdrr.io/pkg/ggplot2/man/labs.html">xlab</a></span><span class="op">(</span><span class="st">""</span><span class="op">)</span> </code></pre></div>
<div class="figure">
<span style="display:block;" id="fig:climate2"></span>
<img src="ESG_p_files/figure-html/climate2-1.png" alt="CO2 in the time of COVID-19. We plot the geographic and sector specific estimates for CO$_2$ emissions provided by https://carbonmonitor.org. The vertical dashed line marks January 13th, 2020, which is the date when a first case of COVID-19 was discovered outside China (in Thailand)." width="672"><p class="caption">
FIGURE 6.2: CO2 in the time of COVID-19. We plot the geographic and sector specific estimates for CO<span class="math inline">\(_2\)</span> emissions provided by <a href="https://carbonmonitor.org" class="uri">https://carbonmonitor.org</a>. The vertical dashed line marks January 13th, 2020, which is the date when a first case of COVID-19 was discovered outside China (in Thailand).
</p>
</div>
<p>At the firm level, we refer to <a href="https://climatechangelab.info" class="uri">https://climatechangelab.info</a>. The evaluation of climate change exposure is postponed to section <a href="Climate.html#climimpact">6.4</a>.</p>
<p>
For temperatures, the challenge is different because of the dimension of the reporting. Thousands of thermometers track variations in meteorological stations and it is cumbersome to access and aggregate such data. Most sensors are located on land, which only covers 29% of the globe’s surfaces. Thus ocean temperature must also be measured (at their surfaces), and this is performed with ships. We refer to the paper by <span class="citation"><a href="Bib.html#ref-hansen2010global" role="doc-biblioref">J. Hansen et al.</a> (<a href="Bib.html#ref-hansen2010global" role="doc-biblioref">2010</a>)</span> for a precise account on this matter. In the lower panel of Figure <a href="Climate.html#fig:climate">6.1</a>, we plot the evolution of the <em>global</em> temperature of our planet. While the curve is less regularly increasing, the <a href="https://climate.nasa.gov/scientific-consensus/">trend is again undeniable</a>. The parallel display of the two series reveals a strong <strong>correlation</strong>. It is now widely accepted that the relationship is <strong>causal</strong>, whereby CO<span class="math inline">\(_2\)</span> emissions are a key driver of the increase in temperature. We point to <span class="citation"><a href="Bib.html#ref-letreut2007historical" role="doc-biblioref">Le Treut</a> (<a href="Bib.html#ref-letreut2007historical" role="doc-biblioref">2007</a>)</span> for a historical perspective on this debate. More recent contributions document feedback effects (<span class="citation"><a href="Bib.html#ref-van2015causal" role="doc-biblioref">Van Nes et al.</a> (<a href="Bib.html#ref-van2015causal" role="doc-biblioref">2015</a>)</span>), or clear direct causality (<span class="citation"><a href="Bib.html#ref-stips2016causal" role="doc-biblioref">Stips et al.</a> (<a href="Bib.html#ref-stips2016causal" role="doc-biblioref">2016</a>)</span>). </p>
<p>From an investment standpoint, being able to quantify physical risks linked to climate change is important. <span class="citation"><a href="Bib.html#ref-hain2021let" role="doc-biblioref">Hain, Kölbel, and Leippold</a> (<a href="Bib.html#ref-hain2021let" role="doc-biblioref">2021</a>)</span> show that, just like for traditional ESG metrics, ratings of physical risks are very much provider-dependent. They compare series from Trucost, Carbone 4 Finance, Southpole, Truevalue Labs, and two academic-based measures and find that correlations within sectors are relatively small. This implies that portfolios sorted on these metrics have limited overlaps when switching from one provider to another. </p>
</div>
<div id="stress-tests-and-other-measures" class="section level2" number="6.3">
<h2>
<span class="header-section-number">6.3</span> Stress tests and other measures<a class="anchor" aria-label="anchor" href="#stress-tests-and-other-measures"><i class="fas fa-link"></i></a>
</h2>
<p>
In <span class="citation"><a href="Bib.html#ref-battiston2017climate" role="doc-biblioref">Battiston et al.</a> (<a href="Bib.html#ref-battiston2017climate" role="doc-biblioref">2017</a>)</span>, GHG emission data is used to stress-test the financial system. In <span class="citation"><a href="Bib.html#ref-reinders2020finance" role="doc-biblioref">Reinders, Schoenmaker, and Van Dijk</a> (<a href="Bib.html#ref-reinders2020finance" role="doc-biblioref">2020</a>)</span>, the focus of the stress test study is set on taxes and their impacts. The risk for firms is that governments will be increasingly inclined to penalize polluters, thereby threatening parts of their balance sheets. In their proposal for an integrated stress-testing methodology, <span class="citation"><a href="Bib.html#ref-allen2020climate" role="doc-biblioref">Allen et al.</a> (<a href="Bib.html#ref-allen2020climate" role="doc-biblioref">2020</a>)</span> promote a scenario-driven approach in which climate models are intertwined with macro-economic models. The procedure is able to generate individual firms’ probabilities of defaults, as well as market valuations. A similar framework is adopted by <span class="citation"><a href="Bib.html#ref-fang2019sustainable" role="doc-biblioref">Fang, Tan, and Wirjanto</a> (<a href="Bib.html#ref-fang2019sustainable" role="doc-biblioref">2019</a>)</span>, and subsequently combined to mean-variance optimization to build portfolios that are less sensitive to climate change risk. Relatedly, <span class="citation"><a href="Bib.html#ref-monasterolo2020climate" role="doc-biblioref">Monasterolo</a> (<a href="Bib.html#ref-monasterolo2020climate" role="doc-biblioref">2020</a>)</span> proposes new climate risk metrics, such as the climate Value-at-Risk, which is computed on corporations that would be most affected in stress scenarios. </p>
<p>
In their attempt to measure climate change risk for corporations, <span class="citation"><a href="Bib.html#ref-li2020corporate" role="doc-biblioref">Q. Li et al.</a> (<a href="Bib.html#ref-li2020corporate" role="doc-biblioref">2020</a>)</span> proceed very differently: they extract textual sentiment from earning call transcripts. The authors use a dedicated climate-centric lexicon combined to manual verifications. From this, they synthesize several climate risk measures which they study in detail. <span class="citation"><a href="Bib.html#ref-chou2019talking" role="doc-biblioref">Chou and Kimbrough</a> (<a href="Bib.html#ref-chou2019talking" role="doc-biblioref">2019</a>)</span> automate the textual screening of firms’ SEC filings. They show that the frequency at which climate change terms are mentioned increases through time, though the patterns differ from one industry to the other. <span class="citation"><a href="Bib.html#ref-faccini2021climate" role="doc-biblioref">Faccini, Matin, and Skiadopoulos</a> (<a href="Bib.html#ref-faccini2021climate" role="doc-biblioref">2021</a>)</span> also analyze textual factors and split risks in two categories: <strong>transition risk</strong> (via policy (e.g., fiscal) or shifts in consumer preferences) and <strong>physical risk</strong> (e.g., catastrophes). They find that only the first one is priced in the US stock market. </p>
<p><span class="citation"><a href="Bib.html#ref-hsu2013does" role="doc-biblioref">A. W. Hsu and Wang</a> (<a href="Bib.html#ref-hsu2013does" role="doc-biblioref">2013</a>)</span> also resort to sentiment analysis, but focused on one media outlet (<em>The Wall Street Journal</em>). They measure the negativity of the tone related to climate change articles in the press. Surprisingly, they report that the aggregate market reacts positively to negative news. Natural language processing (NLP) is also exploited in <span class="citation"><a href="Bib.html#ref-engle2020hedging" role="doc-biblioref">Engle et al.</a> (<a href="Bib.html#ref-engle2020hedging" role="doc-biblioref">2020</a>)</span> to build portfolios that hedge investors against negative news related to climate change. In a similar vein, <span class="citation"><a href="Bib.html#ref-sautner2020firm" role="doc-biblioref">Sautner et al.</a> (<a href="Bib.html#ref-sautner2020firm" role="doc-biblioref">2021a</a>)</span> use transcripts of earnings conference calls to assess the exposure of 10,000 firms to opportunity, physical, and regulatory shocks associated with global warming. They use their methodology in a follow-up paper that links climate risk exposure to risk premia. In a different setting, <span class="citation"><a href="Bib.html#ref-heo2021climate" role="doc-biblioref">Heo</a> (<a href="Bib.html#ref-heo2021climate" role="doc-biblioref">2021</a>)</span> also uses their data to reveal that firms that are more exposed to climate change risk increase their cash holdings, probably in anticipation of adverse situations.
Relatedly, <span class="citation"><a href="Bib.html#ref-santi2020investors" role="doc-biblioref">Santi</a> (<a href="Bib.html#ref-santi2020investors" role="doc-biblioref">2021</a>)</span> crafts a climate sentiment index and shows how it dynamically affects the performance of an Emission-minus-Clean portfolio.</p>
<p>
For a more computer science-focused perspective on NLP-driven classification of ESG topics and climate risks, we refer to <span class="citation"><a href="Bib.html#ref-nugent2020detecting" role="doc-biblioref">Nugent, Stelea, and Leidner</a> (<a href="Bib.html#ref-nugent2020detecting" role="doc-biblioref">2020</a>)</span>, <span class="citation"><a href="Bib.html#ref-raman2020mapping" role="doc-biblioref">Raman, Bang, and Nourbakhsh</a> (<a href="Bib.html#ref-raman2020mapping" role="doc-biblioref">2020</a>)</span>, <span class="citation"><a href="Bib.html#ref-amel2021nlp" role="doc-biblioref">Amel-Zadeh et al.</a> (<a href="Bib.html#ref-amel2021nlp" role="doc-biblioref">2021</a>)</span> (to measure corporate alignment with SDGs), <span class="citation"><a href="Bib.html#ref-bingler2021cheap" role="doc-biblioref">Bingler, Kraus, and Leippold</a> (<a href="Bib.html#ref-bingler2021cheap" role="doc-biblioref">2021</a>)</span> (on the so-called <em>ClimateBERT</em>), <span class="citation"><a href="Bib.html#ref-apel2021real" role="doc-biblioref">Apel, Betzer, and Scherer</a> (<a href="Bib.html#ref-apel2021real" role="doc-biblioref">2021</a>)</span>, <span class="citation"><a href="Bib.html#ref-borms2021semi" role="doc-biblioref">Borms et al.</a> (<a href="Bib.html#ref-borms2021semi" role="doc-biblioref">2021</a>)</span>, and <span class="citation"><a href="Bib.html#ref-sokolov2021building" role="doc-biblioref">Sokolov, Mostovoy, et al.</a> (<a href="Bib.html#ref-sokolov2021building" role="doc-biblioref">2021</a>)</span>. A simple lexicon-based green sentiment index is proposed in <span class="citation"><a href="Bib.html#ref-bessec2021green" role="doc-biblioref">Bessec and Fouquau</a> (<a href="Bib.html#ref-bessec2021green" role="doc-biblioref">2021</a>)</span>.</p>
<p>Lastly, the <em>Journal of Financial Stability</em> dedicated a special issue on the role of climate risk on financial perturbations (see <span class="citation"><a href="Bib.html#ref-battiston2020climate" role="doc-biblioref">Battiston, Dafermos, and Monasterolo</a> (<a href="Bib.html#ref-battiston2020climate" role="doc-biblioref">2021</a>)</span>).</p>
</div>
<div id="climimpact" class="section level2" number="6.4">
<h2>
<span class="header-section-number">6.4</span> Micro- and macro-economic impacts<a class="anchor" aria-label="anchor" href="#climimpact"><i class="fas fa-link"></i></a>
</h2>
<p>
Climate events or disasters are susceptible to affect firms in numerous ways. In <span class="citation"><a href="Bib.html#ref-addoum2019temperature" role="doc-biblioref">Addoum, Ng, and Ortiz-Bobea</a> (<a href="Bib.html#ref-addoum2019temperature" role="doc-biblioref">2019</a>)</span> and <span class="citation"><a href="Bib.html#ref-hugon2019impact" role="doc-biblioref">Hugon and Law</a> (<a href="Bib.html#ref-hugon2019impact" role="doc-biblioref">2019</a>)</span>), the abnormal heat is linked to reductions in earnings, while in <span class="citation"><a href="Bib.html#ref-gostlow2019pricing" role="doc-biblioref">Gostlow</a> (<a href="Bib.html#ref-gostlow2019pricing" role="doc-biblioref">2019</a>)</span> it is shown that a rainfall factor explains the cross-section of stocks in the US, Europe, and Japan. In <span class="citation"><a href="Bib.html#ref-liu2017air" role="doc-biblioref">B. Liu and Xu</a> (<a href="Bib.html#ref-liu2017air" role="doc-biblioref">2017</a>)</span>, the air quality index is shown to have strong effects on the stock markets, both at the individual firm level and at the aggregate level. <span class="citation"><a href="Bib.html#ref-tol2021economic" role="doc-biblioref">Tol</a> (<a href="Bib.html#ref-tol2021economic" role="doc-biblioref">2021b</a>)</span> disentangles the impacts of climate (long-term changes) and weather (temporary shocks) on the economy (productivity, i.e., production output per worker is the dependent variable). The paper shows that both matter, especially long-run temperatures (climate) and abnormal precipitation (weather). In their study on Canada, <span class="citation"><a href="Bib.html#ref-udin2021climate" role="doc-biblioref">U-Din, Tripe, and Nazir</a> (<a href="Bib.html#ref-udin2021climate" role="doc-biblioref">2021</a>)</span> find that stock markets react negatively to extreme weather events.
Rising sea levels are also a major concern (see <span class="citation"><a href="Bib.html#ref-bernstein2019disaster" role="doc-biblioref">Bernstein, Gustafson, and Lewis</a> (<a href="Bib.html#ref-bernstein2019disaster" role="doc-biblioref">2019</a>)</span>). More and more, indices are being developed to capture or predict the effects of global warming. For instance, <span class="citation"><a href="Bib.html#ref-jiang2020climate" role="doc-biblioref">Jiang and Weng</a> (<a href="Bib.html#ref-jiang2020climate" role="doc-biblioref">2020</a>)</span> rely on the Actuaries Climate Index to build efficient portfolios of agriculture-related firms.
Lastly, in a related investment field, the impact of climate change on the real estate market is abundantly documented, but is out of the scope of this review, though it does have direct consequences for financial markets.</p>
<p>Naturally, for investors, being able to gauge if a firm is exposed to climate change has become crucial. There is of course no unique way to proceed. For instance, <span class="citation"><a href="Bib.html#ref-sautner2020firm" role="doc-biblioref">Sautner et al.</a> (<a href="Bib.html#ref-sautner2020firm" role="doc-biblioref">2021a</a>)</span> resort to a machine learning analysis of corporate conference calls. <span class="citation"><a href="Bib.html#ref-gorgen2020carbon" role="doc-biblioref">Görgen et al.</a> (<a href="Bib.html#ref-gorgen2020carbon" role="doc-biblioref">2020</a>)</span> and <span class="citation"><a href="Bib.html#ref-roncalli2020measuring" role="doc-biblioref">Roncalli et al.</a> (<a href="Bib.html#ref-roncalli2020measuring" role="doc-biblioref">2020</a>)</span> measure exposure via regressions against brown-minus-green (BMG) risk factor. </p>
<p>We now split the contributions on macro-economic impacts in three categories: event studies, disaster modelling and statistical analysis. In the former, special and punctual events are scrutinized and researchers try to evaluate if changes have occurred after the event, e.g., if trends have stopped or reversed. More generally, valuable reference on this topic is the book by <span class="citation"><a href="Bib.html#ref-tol2019climate" role="doc-biblioref">Tol</a> (<a href="Bib.html#ref-tol2019climate" role="doc-biblioref">2019</a>)</span>.</p>
<p>For instance, according to <span class="citation"><a href="Bib.html#ref-monasterolo2020blind" role="doc-biblioref">Monasterolo and De Angelis</a> (<a href="Bib.html#ref-monasterolo2020blind" role="doc-biblioref">2020</a>)</span>, investors have had more consideration for low carbon assets after the Paris Agreement. <span class="citation"><a href="Bib.html#ref-ramelli2020climate" role="doc-biblioref">Ramelli, Ossola, and Rancan</a> (<a href="Bib.html#ref-ramelli2020climate" role="doc-biblioref">2021</a>)</span> report that the success of the Global Climate Strike in March 2019 has increased expectations of investors toward carbon intensive firms (i.e., it has pushed their cost of capital upward). <span class="citation"><a href="Bib.html#ref-sen2020climate" role="doc-biblioref">Sen and Schickfus</a> (<a href="Bib.html#ref-sen2020climate" role="doc-biblioref">2020</a>)</span> studies the progressive impact of German environmental policies on utility companies. They find early policies had no effect but later ones did, pointing to a risk of stranded assets perceived by investors. Relatedly, <span class="citation"><a href="Bib.html#ref-ma2021climate" role="doc-biblioref">Ma et al.</a> (<a href="Bib.html#ref-ma2021climate" role="doc-biblioref">2021</a>)</span> find that stocks co-move with the market more during climate disasters. </p>
<p>In disaster models (see also Chapter <a href="Equilibrium.html#Equilibrium">7</a>, authors investigate how externalities can affect firm cash flows, risk, or investor demands. <span class="citation"><a href="Bib.html#ref-mittnik2020climate" role="doc-biblioref">Mittnik, Semmler, and Haider</a> (<a href="Bib.html#ref-mittnik2020climate" role="doc-biblioref">2020</a>)</span> for instance document the impact of climate-related shocks on capital losses. Relatedly, <span class="citation"><a href="Bib.html#ref-lanfear2019market" role="doc-biblioref">Lanfear, Lioui, and Siebert</a> (<a href="Bib.html#ref-lanfear2019market" role="doc-biblioref">2019</a>)</span>, lanfear2020shelter find that stocks underperform during hurricane events, with the exception of high tech companies.</p>
<p>Once the risk is acknowledged, investors should take it into account. <span class="citation"><a href="Bib.html#ref-shen2019strategic" role="doc-biblioref">Shen, LaPlante, and Rubtsov</a> (<a href="Bib.html#ref-shen2019strategic" role="doc-biblioref">2019</a>)</span> propose an asset allocation scheme based on a large VAR(1) estimation in which changes in temperatures are used as state variables. <span class="citation"><a href="Bib.html#ref-kumar2019climate" role="doc-biblioref">Kumar, Xin, and Zhang</a> (<a href="Bib.html#ref-kumar2019climate" role="doc-biblioref">2019</a>)</span> also exploit climate-related information to build profitable long-short portfolios. They show that stocks that are more sensitive to abnormal temperature changes earn lower returns than those that are less sensitive to these temperature variations.</p>
<p>Finally, <span class="citation"><a href="Bib.html#ref-kahn2019long" role="doc-biblioref">Kahn et al.</a> (<a href="Bib.html#ref-kahn2019long" role="doc-biblioref">2019</a>)</span> use a large-scale panel data analysis to link the per-capita real output growth to changes in temperatures. They find that exposures are strongly country-dependent. <span class="citation"><a href="Bib.html#ref-colacito2019temperature" role="doc-biblioref">Colacito, Hoffmann, and Phan</a> (<a href="Bib.html#ref-colacito2019temperature" role="doc-biblioref">2019</a>)</span> find that a 1°F increase in summer temperature reduces state-output growth in the US by 0.15 to 0.25 percentage points.
Using quantile regressions, <span class="citation"><a href="Bib.html#ref-kiley2021growth" role="doc-biblioref">Kiley</a> (<a href="Bib.html#ref-kiley2021growth" role="doc-biblioref">2021</a>)</span> document a significant link between temperatures and economic downside risks (strong contractions of the GDP per capita).
</p>
</div>
<div id="investor-attention" class="section level2" number="6.5">
<h2>
<span class="header-section-number">6.5</span> Investor attention<a class="anchor" aria-label="anchor" href="#investor-attention"><i class="fas fa-link"></i></a>
</h2>
<p>
In their large scale survey of investor preferences, <span class="citation"><a href="Bib.html#ref-ilhan2020institutional" role="doc-biblioref">Ilhan et al.</a> (<a href="Bib.html#ref-ilhan2020institutional" role="doc-biblioref">2021</a>)</span> document several salient trends. First, they find that a majority of investors are willing to disclose the carbon impact of their portfolios. In fact, many consider climate risk reporting to be as important as financial reporting. This translates into actions because higher institutional ownership in firms is linked to higher propensity to voluntarily disclose carbon emissions and to provide higher quality information. In the same vein, <span class="citation"><a href="Bib.html#ref-anderson2020talking" role="doc-biblioref">Anderson and Robinson</a> (<a href="Bib.html#ref-anderson2020talking" role="doc-biblioref">2020</a>)</span> report a shift in individual investor beliefs after extreme weather events in Sweden in 2014. Posterior to the climate calamities, these investors shifted their retirement portfolios toward sustainable funds. Similarly, <span class="citation"><a href="Bib.html#ref-makridis2018can" role="doc-biblioref">Makridis</a> (<a href="Bib.html#ref-makridis2018can" role="doc-biblioref">2021</a>)</span> extreme temperatures distort investors’ beliefs on aggregate growth, thereby altering asset prices. It is found that days with abnormally hot or cold temperatures experience lower stock returns. Using data from the Spatial Hazards Events and Losses Database for the United States (SHELDUS), <span class="citation"><a href="Bib.html#ref-marshall2021salient" role="doc-biblioref">Marshall et al.</a> (<a href="Bib.html#ref-marshall2021salient" role="doc-biblioref">2021</a>)</span> also find that, after climate disasters, investors shift resources towards more environmentally-friendly mutual funds.
</p>
<p>At a more macro-level, <span class="citation"><a href="Bib.html#ref-wu2020air" role="doc-biblioref">Q. Wu and Lu</a> (<a href="Bib.html#ref-wu2020air" role="doc-biblioref">2020</a>)</span> build a search engine-based index that captures the mood of investors, and they detail how it impacts the market liquidity and volatility. <span class="citation"><a href="Bib.html#ref-choi2020attention" role="doc-biblioref">Choi, Gao, and Jiang</a> (<a href="Bib.html#ref-choi2020attention" role="doc-biblioref">2020</a>)</span> also resort to search engine data (the Google Search Volume Index) to evaluate if people’s attention is shifted by shocks to local temperatures. When the weather is unusually hot, carbon-intensive firms experience lower returns, compared to greener firms.
<span class="citation"><a href="Bib.html#ref-bessec2020green" role="doc-biblioref">Bessec and Fouquau</a> (<a href="Bib.html#ref-bessec2020green" role="doc-biblioref">2020</a>)</span> scan article from the <em>Wall Street Journal</em> to build sentiment indices with respect to environment issues. They show that sectors are impacted differently by variations in these indices. In <span class="citation"><a href="Bib.html#ref-alok2020fund" role="doc-biblioref">Alok, Kumar, and Wermers</a> (<a href="Bib.html#ref-alok2020fund" role="doc-biblioref">2020</a>)</span>, investor perception is examined through the prism of natural disasters. The authors find that funds located close to disaster areas reduce their portfolio holdings in firms located close to this area. Finally, <span class="citation"><a href="Bib.html#ref-fiordelisi2021esg" role="doc-biblioref">Fiordelisi et al.</a> (<a href="Bib.html#ref-fiordelisi2021esg" role="doc-biblioref">2021</a>)</span> find that ESG ETFs perform well after episodes of climate disasters and conclude that this must be because investors reallocate towards SRI funds subsequently to periods of climate tensions.
</p>
</div>
<div id="policy" class="section level2" number="6.6">
<h2>
<span class="header-section-number">6.6</span> Policy<a class="anchor" aria-label="anchor" href="#policy"><i class="fas fa-link"></i></a>
</h2>
<p>Naturally, given the stakes induced by climate change, economists have contributed to the debate by proposing policies to reduce the impact of global warming. Themes, scopes and methods are diverse; we provide a very brief overview below. With respect to abatement policies, the main reference is the survey of <span class="citation"><a href="Bib.html#ref-pindyck2013climate" role="doc-biblioref">Pindyck</a> (<a href="Bib.html#ref-pindyck2013climate" role="doc-biblioref">2013</a>)</span>.</p>
<p>A major topic when thinking about climate change mitigation is the role of regulators. The most straightforward policy measure is the carbon tax, whereby firms would have to pay a fee depending on their level of carbon emissions. Several books are dedicated to this subject (<span class="citation"><a href="Bib.html#ref-hsu2012case" role="doc-biblioref">S.-L. Hsu</a> (<a href="Bib.html#ref-hsu2012case" role="doc-biblioref">2012</a>)</span>, <span class="citation"><a href="Bib.html#ref-milne2012handbook" role="doc-biblioref">Milne and Andersen</a> (<a href="Bib.html#ref-milne2012handbook" role="doc-biblioref">2012</a>)</span>, <span class="citation"><a href="Bib.html#ref-kreiser2015carbon" role="doc-biblioref">Kreiser et al.</a> (<a href="Bib.html#ref-kreiser2015carbon" role="doc-biblioref">2015</a>)</span>, <span class="citation"><a href="Bib.html#ref-cramton2017global" role="doc-biblioref">Cramton et al.</a> (<a href="Bib.html#ref-cramton2017global" role="doc-biblioref">2017</a>)</span>, <span class="citation"><a href="Bib.html#ref-metcalf2018paying" role="doc-biblioref">Metcalf</a> (<a href="Bib.html#ref-metcalf2018paying" role="doc-biblioref">2018</a>)</span>), but we recommend the <a href="https://openknowledge.worldbank.org/handle/10986/26300">public handbook</a> by the World Bank (<span class="citation"><a href="Bib.html#ref-partnership2017carbon" role="doc-biblioref">Partnership for Market Readiness</a> (<a href="Bib.html#ref-partnership2017carbon" role="doc-biblioref">2017</a>)</span>).</p>
<p>The most decisive question on this matter is: what is the impact of carbon taxes on the economy? Unfortunately, carbon taxes remain marginal and they are enforced on rather small scales, which means that there is not an abundance of data to help researchers answer the question. Below, we list a few attempts in this direction. </p>
<ul>
<li>
<strong>No impact on firms</strong>. According to <span class="citation"><a href="Bib.html#ref-venmans2020carbon" role="doc-biblioref">Venmans, Ellis, and Nachtigall</a> (<a href="Bib.html#ref-venmans2020carbon" role="doc-biblioref">2020</a>)</span>, carbon taxes have not been shown to be antithetical to competitiveness.<br>
</li>
<li>
<strong>No impact on the economy</strong>. In their study on Canda and Europe, konradt2021carbon reveal that carbon taxes do not generate inflation.<br>
</li>
<li>
<strong>Positive effect on the economy</strong>. The article <span class="citation"><a href="Bib.html#ref-porter1995toward" role="doc-biblioref">Porter and Van der Linde</a> (<a href="Bib.html#ref-porter1995toward" role="doc-biblioref">1995</a>)</span> is an early contribution that proposes that environmental regulations may be good for firms and competitiveness because it fosters innovation (this is often referred to as the <em>Porter hypothesis</em>). It has for instance been confirmed in Quebec (<span class="citation"><a href="Bib.html#ref-lanoie2008environmental" role="doc-biblioref">Lanoie, Patry, and Lajeunesse</a> (<a href="Bib.html#ref-lanoie2008environmental" role="doc-biblioref">2008</a>)</span>), in the OECD (<span class="citation"><a href="Bib.html#ref-lanoie2011environmental" role="doc-biblioref">Lanoie et al.</a> (<a href="Bib.html#ref-lanoie2011environmental" role="doc-biblioref">2011</a>)</span>), and in Europe (<span class="citation"><a href="Bib.html#ref-costantini2012green" role="doc-biblioref">Costantini and Mazzanti</a> (<a href="Bib.html#ref-costantini2012green" role="doc-biblioref">2012</a>)</span>). <span class="citation"><a href="Bib.html#ref-brown2021can" role="doc-biblioref">Brown, Martinsson, and Thomann</a> (<a href="Bib.html#ref-brown2021can" role="doc-biblioref">2022</a>)</span> show that, at least, carbon taxes are a strong incentive for polluting firms to spend more on R&D - though it’s not clear that this effort is environmentally focused. According to <span class="citation"><a href="Bib.html#ref-kotlikoff2021can" role="doc-biblioref">Kotlikoff et al.</a> (<a href="Bib.html#ref-kotlikoff2021can" role="doc-biblioref">2021</a>)</span>, carbon taxes can benefit all regions of the world (in terms of welfare) only if there is <strong>strong cooperation</strong> (major interregional as well as intergenerational transfers). <span class="citation"><a href="Bib.html#ref-brown2021can" role="doc-biblioref">Brown, Martinsson, and Thomann</a> (<a href="Bib.html#ref-brown2021can" role="doc-biblioref">2022</a>)</span> find that taxes on emissions booste the R&D of heavy polluters.<br>
</li>
<li>
<strong>It depends</strong>. The early survey of <span class="citation"><a href="Bib.html#ref-bosquet2000environmental" role="doc-biblioref">Bosquet</a> (<a href="Bib.html#ref-bosquet2000environmental" role="doc-biblioref">2000</a>)</span> establishes that the impact depends on the time horizons. Benefits seem to occur in the short term, but effects in the long term are uncertain.
<span class="citation"><a href="Bib.html#ref-klenert2018making" role="doc-biblioref">Klenert et al.</a> (<a href="Bib.html#ref-klenert2018making" role="doc-biblioref">2018</a>)</span> come to the conclusion that the optimal modality of carbon pricing depends on the political context (e.g., on the level of trust in the government or on the main concerns of the population). <span class="citation"><a href="Bib.html#ref-king2019targeted" role="doc-biblioref">M. King, Tarbush, and Teytelboym</a> (<a href="Bib.html#ref-king2019targeted" role="doc-biblioref">2019</a>)</span> dissect the implications of carbon taxes at the sector level. They show that targeted taxes are the most efficient.
In their overview of emission trading systems, <span class="citation"><a href="Bib.html#ref-narassimhan2018carbon" role="doc-biblioref">Narassimhan et al.</a> (<a href="Bib.html#ref-narassimhan2018carbon" role="doc-biblioref">2018</a>)</span> reveal that the success of carbon pricing initiatives can depend on several factors, such as administrative prudence, appropriate carbon revenue management and stakeholder engagement. <span class="citation"><a href="Bib.html#ref-blitz2021carbon" role="doc-biblioref">Blitz and Hoogteijling</a> (<a href="Bib.html#ref-blitz2021carbon" role="doc-biblioref">2021</a>)</span> study the impact of carbon taxes on value factor strategies. They find that for moderate levels of taxes, the impact on long value portfolio is negligible. However, performance decays when the tax rates increase unreasonably.<br>
</li>
<li>
<strong>Positive effect on the environment</strong>. <span class="citation"><a href="Bib.html#ref-rafaty2021carbon" role="doc-biblioref">Rafaty, Dolphin, and Pretis</a> (<a href="Bib.html#ref-rafaty2021carbon" role="doc-biblioref">2021</a>)</span> contend that carbon taxes have reduced the growth of CO<span class="math inline">\(_2\)</span> emissions by 1 to 2.5% and the authors conclude: “<em>carbon pricing alone is unlikely to be sufficient to achieve emission reductions consistent with the Paris climate agreement</em>.” This conclusion is also supported by the meta-analyses <span class="citation"><a href="Bib.html#ref-patuelli2005environmental" role="doc-biblioref">Patuelli, Nijkamp, and Pels</a> (<a href="Bib.html#ref-patuelli2005environmental" role="doc-biblioref">2005</a>)</span> and <span class="citation"><a href="Bib.html#ref-green2021does" role="doc-biblioref">J. F. Green</a> (<a href="Bib.html#ref-green2021does" role="doc-biblioref">2021</a>)</span>.</li>
<li>
<strong>Negative effect on the economy</strong>. In their study on California’s cap-and-trade program, <span class="citation"><a href="Bib.html#ref-bartram2021real" role="doc-biblioref">Bartram, Hou, and Kim</a> (<a href="Bib.html#ref-bartram2021real" role="doc-biblioref">2021</a>)</span> report that climate policies can backfire. They show that financially unconstrained firms do not reduce their total emissions. What is worse is that they find that constrained firms increase total emissions by shifting activity to states that are not subject to carbon penalties.<br>
</li>
<li>
<strong>Negative effect on society</strong>. <span class="citation"><a href="Bib.html#ref-kanzig2021unequal" role="doc-biblioref">Knzig</a> (<a href="Bib.html#ref-kanzig2021unequal" role="doc-biblioref">2021</a>)</span> documents the heterogenous impact of carbon pricing. The poorest populations are more hardly hit and have to lower their consumption and experience a fall in income.<br>
</li>
<li>
<strong>Effect in financial markets</strong>. <span class="citation"><a href="Bib.html#ref-oestreich2015carbon" role="doc-biblioref">Oestreich and Tsiakas</a> (<a href="Bib.html#ref-oestreich2015carbon" role="doc-biblioref">2015</a>)</span> document that firms that benefited from free carbon emission allowances in Germany significantly outperformed firms that did not.</li>
</ul>
<p>
In addition, several theoretical models tackle the topic of carbon pricing. For instance, <span class="citation"><a href="Bib.html#ref-finkelstein2021macroeconomic" role="doc-biblioref">Finkelstein Shapiro and Metcalf</a> (<a href="Bib.html#ref-finkelstein2021macroeconomic" role="doc-biblioref">2021</a>)</span> propose an equilibrium model in which the introduction of a carbon tax has <strong>positive</strong> effects on labor income, consumption, output and labor force participation, but has a negative impact on employment. <span class="citation"><a href="Bib.html#ref-jondeau2021greening" role="doc-biblioref">Jondeau, Mojon, and Monnet</a> (<a href="Bib.html#ref-jondeau2021greening" role="doc-biblioref">2021</a>)</span> analyze the impact of transition risks on financial stability. <span class="citation"><a href="Bib.html#ref-jaumotte2021mitigating" role="doc-biblioref">Jaumotte, Liu, and McKibbin</a> (<a href="Bib.html#ref-jaumotte2021mitigating" role="doc-biblioref">2021</a>)</span> contend that in order to achieve a smooth transition, carbon taxes must be complemented by green fiscal stimuli (green public investment and subsidies to renewables production).</p>
<p>A different angle is studied in <span class="citation"><a href="Bib.html#ref-aid2021optimal" role="doc-biblioref">Aı̈d and Biagini</a> (<a href="Bib.html#ref-aid2021optimal" role="doc-biblioref">2021</a>)</span>, who also discuss carbon emission reduction, but in this paper, regulatory instances pursue their objectives by allowing emission permits. Both firms and the regulator optimize their own utility function to reach an equilibrium. One notable finding is that optimal abatement efforts are constant through time.
Furthermore, <span class="citation"><a href="Bib.html#ref-traeger2021uncertainty" role="doc-biblioref">Traeger</a> (<a href="Bib.html#ref-traeger2021uncertainty" role="doc-biblioref">2021</a>)</span> studies the impact of uncertainty (emissions, temperature, and damages) on the optimal level of the carbon tax (considered to be the social cost of carbon (SCC), see also Section <a href="Equilibrium.html#dice">7.2</a>). The paper shows that in the absence of uncertainty, the tax is linear in several factors (e.g., climate variables), but that the relationship becomes convex when the climate state variables are stochastic. <span class="citation"><a href="Bib.html#ref-benmir2020green" role="doc-biblioref">Benmir, Jaccard, and Vermandel</a> (<a href="Bib.html#ref-benmir2020green" role="doc-biblioref">2020</a>)</span> conclude that the optimal tax level depends on the shadow price of emissions and that it it pro-cyclical. It should be high during booms to cool the economy down, and low during recessions to stimulate a recovery.</p>
<p><span class="citation"><a href="Bib.html#ref-dunz2021climate" role="doc-biblioref">Dunz, Naqvi, and Monasterolo</a> (<a href="Bib.html#ref-dunz2021climate" role="doc-biblioref">2021</a>)</span> build a complex economic model in which banks are sensitive to a green sentiment. This specification allows banks to possibly anticipate a carbon tax or a green supporting factor and increase its loan rates to brown companies. The authors show a carbon tax would be more efficient if it is combined with redistributive and welfare measures and if banks indeed resort to a climate sentiment so that the transition to a low carbon economy is smooth.
Finally, <span class="citation"><a href="Bib.html#ref-lemoine2014watch" role="doc-biblioref">Lemoine and Traeger</a> (<a href="Bib.html#ref-lemoine2014watch" role="doc-biblioref">2014</a>)</span> analyze the optimal level of carbon taxes in a world with tipping points, which are moments of time when damage to the planet is irreversible and may cause chain reactions. According to their projections, the intensity of carbon taxes should increase until 2150, and then possibly decrease.</p>
<p>Beyond carbon pricing, there are other ways to curb the economic activity toward more sustainability. For example, <span class="citation"><a href="Bib.html#ref-yao2021green" role="doc-biblioref">Yao et al.</a> (<a href="Bib.html#ref-yao2021green" role="doc-biblioref">2021</a>)</span> analyze the impact of green credit policies (when banks favor green projects and firms when allowing loans) and find (unsurprisingly) that it is only penalizing for heavily polluting industries (e.g., electrolytic aluminum, petrochemical and tanning). In their study on Chinese markets, <span class="citation"><a href="Bib.html#ref-zhang2021green" role="doc-biblioref">X. Zhang, Zhao, and Qu</a> (<a href="Bib.html#ref-zhang2021green" role="doc-biblioref">2021</a>)</span> find that ESG firms experience higher returns (compared to low ESG stocks) since 2016, when green policies were enforced. This shows that governmental action can be key to promote certain types of assets.
<span class="citation"><a href="Bib.html#ref-mckibbin2020climate" role="doc-biblioref">McKibbin et al.</a> (<a href="Bib.html#ref-mckibbin2020climate" role="doc-biblioref">2020</a>)</span> argue that climate change and the resulting shocks are likely to alter central banks’ ability to predict and manage inflation. The authors mention challenges in the conception of joint climate and monetary policies.</p>
<p>
The angle of monetary policy is mentioned in several studies. <span class="citation"><a href="Bib.html#ref-dafermos2018climate" role="doc-biblioref">Dafermos, Nikolaidi, and Galanis</a> (<a href="Bib.html#ref-dafermos2018climate" role="doc-biblioref">2018</a>)</span> come to pessimistic conclusions about the risk that climate change induces on economies in general and financial markets in particular. Nevertheless, they contend that green quantitative easing can help reduce financial instability. <span class="citation"><a href="Bib.html#ref-dietrich2021expectations" role="doc-biblioref">Dietrich, Müller, and Schoenle</a> (<a href="Bib.html#ref-dietrich2021expectations" role="doc-biblioref">2021</a>)</span> argue that natural disasters reduce the natural rate of interest. After analyzing a survey on expectations toward climate change and building a New Keynesian model, they also find that climate risk shrinks inflation and the output gap by 0.3% and 0.2%, respectively. <span class="citation"><a href="Bib.html#ref-masciandaro2021society" role="doc-biblioref">Masciandaro and Tarsia</a> (<a href="Bib.html#ref-masciandaro2021society" role="doc-biblioref">2021</a>)</span> propose an index that tracks the efforts of central banks with regard to climate-change issues.</p>
</div>
<div id="the-kaya-identity" class="section level2" number="6.7">
<h2>
<span class="header-section-number">6.7</span> The Kaya identity<a class="anchor" aria-label="anchor" href="#the-kaya-identity"><i class="fas fa-link"></i></a>
</h2>
<p>[Section under construction]</p>
</div>
</div>
<div class="chapter-nav">
<div class="prev"><a href="Quant.html"><span class="header-section-number">5</span> Quantitative portfolio construction with ESG data and criteria</a></div>
<div class="next"><a href="Equilibrium.html"><span class="header-section-number">7</span> SRI in economic equilibria</a></div>
</div></main><div class="col-md-3 col-lg-2 d-none d-md-block sidebar sidebar-chapter">
<nav id="toc" data-toggle="toc" aria-label="On this page"><h2>On this page</h2>
<ul class="nav navbar-nav">
<li><a class="nav-link" href="#Climate"><span class="header-section-number">6</span> Climate change risk</a></li>
<li><a class="nav-link" href="#uncertain-discounting"><span class="header-section-number">6.1</span> Uncertain discounting</a></li>
<li><a class="nav-link" href="#measurement"><span class="header-section-number">6.2</span> Measurement issues</a></li>
<li><a class="nav-link" href="#stress-tests-and-other-measures"><span class="header-section-number">6.3</span> Stress tests and other measures</a></li>
<li><a class="nav-link" href="#climimpact"><span class="header-section-number">6.4</span> Micro- and macro-economic impacts</a></li>
<li><a class="nav-link" href="#investor-attention"><span class="header-section-number">6.5</span> Investor attention</a></li>
<li><a class="nav-link" href="#policy"><span class="header-section-number">6.6</span> Policy</a></li>
<li><a class="nav-link" href="#the-kaya-identity"><span class="header-section-number">6.7</span> The Kaya identity</a></li>
</ul>
<div class="book-extra">
<ul class="list-unstyled">
</ul>
</div>
</nav>
</div>
</div>
</div> <!-- .container -->
<footer class="bg-primary text-light mt-5"><div class="container"><div class="row">
<div class="col-12 col-md-6 mt-3">
<p>"<strong>Perspectives in sustainable equity investing</strong>" was written by Guillaume Coqueret. It was last built on 2022-07-18.</p>
</div>
<div class="col-12 col-md-6 mt-3">
<p>This book was built by the <a class="text-light" href="https://bookdown.org">bookdown</a> R package.</p>
</div>
</div></div>
</footer><!-- dynamically load mathjax for compatibility with self-contained --><script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
var src = "true";
if (src === "" || src === "true") src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-MML-AM_CHTML";
if (location.protocol !== "file:")
if (/^https?:/.test(src))
src = src.replace(/^https?:/, '');
script.src = src;
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script><script type="text/x-mathjax-config">const popovers = document.querySelectorAll('a.footnote-ref[data-toggle="popover"]');
for (let popover of popovers) {
const div = document.createElement('div');
div.setAttribute('style', 'position: absolute; top: 0, left:0; width:0, height:0, overflow: hidden; visibility: hidden;');
div.innerHTML = popover.getAttribute('data-content');
var has_math = div.querySelector("span.math");
if (has_math) {
document.body.appendChild(div);
MathJax.Hub.Queue(["Typeset", MathJax.Hub, div]);
MathJax.Hub.Queue(function() {
popover.setAttribute('data-content', div.innerHTML);
document.body.removeChild(div);
})
}
}
</script>
</body>
</html>