-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path28_LongestCommonSubSeq.cpp
156 lines (136 loc) · 4.04 KB
/
28_LongestCommonSubSeq.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
// https://leetcode.com/problems/longest-common-subsequence/
// Given two strings text1 and text2, return the length of their longest
// common subsequence. If there is no common subsequence, return 0.
// A subsequence of a string is a new string generated from the original
// string with some characters (can be none) deleted without changing the
// relative order of the remaining characters.
// For example, "ace" is a subsequence of "abcde".
// A common subsequence of two strings is a subsequence that is common to
// both strings.
#include <bits/stdc++.h>
using namespace std;
class Solution4
{
// Tabulation: Index Shifting: Space Optimisation
public:
int longestCommonSubsequence(string text1, string text2)
{
int n1 = text1.size(), n2 = text2.size();
vector<int> cp(n2 + 1), xp(n2 + 1);
for (int i = 1; i <= n1; ++i)
{
for (int j = 1; j <= n2; ++j)
{
if (text1[i - 1] == text2[j - 1]) xp[j] = 1 + cp[j - 1];
else xp[j] = max(xp[j - 1], cp[j]);
}
cp = xp;
}
return cp[n2];
}
};
class Solution3
{
// Tabulation: Index Shifting
public:
int longestCommonSubsequence(string text1, string text2)
{
int n1 = text1.size(), n2 = text2.size();
vector<vector<int>> dp(n1 + 1, vector<int>(n2 + 1, 0));
for (int i = 1; i <= n1; ++i)
for (int j = 1; j <= n2; ++j)
if (text1[i - 1] == text2[j - 1])
dp[i][j] = 1 + dp[i - 1][j - 1];
else
dp[i][j] = max(dp[i][j - 1], dp[i - 1][j]);
return dp[n1][n2];
}
};
class Solution2
{
// Tabulation
public:
int longestCommonSubsequence(string text1, string text2)
{
int n1 = text1.size(), n2 = text2.size();
vector<vector<int>> dp(n1, vector<int>(n2));
int ind = text2.find(text1[0]);
if (ind != string::npos)
for (int i = ind; i < n2; ++i)
dp[0][i] = 1;
ind = text1.find(text2[0]);
if (ind != string::npos)
for (int i = ind; i < n1; ++i)
dp[i][0] = 1;
for (int i = 1; i < n1; ++i)
for (int j = 1; j < n2; ++j)
if (text1[i] == text2[j])
dp[i][j] = 1 + dp[i - 1][j - 1];
else
dp[i][j] = max(dp[i][j - 1], dp[i - 1][j]);
return dp[n1 - 1][n2 - 1];
}
};
class Solution1
{
// Recursion: Memoization : TLE
public:
int longestCommonSubsequence(string text1, string text2)
{
int n1 = text1.size(), n2 = text2.size();
vector<vector<int>> dp(n1, vector<int>(n2, -1));
return solve(text1, text2, dp, n1 - 1, n2 - 1);
}
int solve(string &s1, string &s2, vector<vector<int>> &dp, int n1, int n2)
{
// Base condition
if (n1 == -1 || n2 == -1)
return 0;
// Dp
if (dp[n1][n2] != -1)
return dp[n1][n2];
// Match
if (s1[n1] == s2[n2])
{
return dp[n1][n2] = 1 + solve(s1, s2, dp, n1 - 1, n2 - 1);
}
else
{
return dp[n1][n2] = max(solve(s1, s2, dp, n1, n2 - 1), solve(s1, s2, dp, n1 - 1, n2));
}
}
};
class Solution
{
// BruteForce: Recursion
public:
int longestCommonSubsequence(string text1, string text2)
{
int n1 = text1.size(), n2 = text2.size();
return solve(text1, text2, n1 - 1, n2 - 1);
}
int solve(string &s1, string &s2, int n1, int n2)
{
// Base condition
if (n1 == -1 || n2 == -1)
return 0;
// Match
if (s1[n1] == s2[n2])
{
return 1 + solve(s1, s2, n1 - 1, n2 - 1);
}
else
{
return max(solve(s1, s2, n1, n2 - 1), solve(s1, s2, n1 - 1, n2));
}
}
};
int main()
{
string text1 = "bd", text2 = "ace";
Solution3 Obj1;
cout << Obj1.longestCommonSubsequence(text1, text2);
ios_base::sync_with_stdio(false);
cin.tie(NULL);
return 0;
}