forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMKLDNNCommon.cpp
162 lines (146 loc) · 5.51 KB
/
MKLDNNCommon.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
#include <ATen/native/mkldnn/MKLDNNCommon.h>
#include <ATen/OpaqueTensorImpl.h>
#include <c10/core/Allocator.h>
#if AT_MKLDNN_ENABLED()
#include <ideep.hpp>
namespace at { namespace native {
/**
* `IntrusivePtrTargetWrapper` wraps a custom storage handle of a tensor
* (as template param) and inherits `c10::intrusive_ptr_target` so that it
* can be used with `c10::intrusive_ptr`.
*
* It currently only supports wrapping the custom handle by:
* - Constructing with an existing custom handle by copy/move constructor.
*
* See `OpaqueTensorImpl::opaque_handle_`.
*
* NOTE: if this is generally useful we may want to move this to its own header.
*/
template <typename T>
struct TORCH_API IntrusivePtrTargetWrapper : c10::intrusive_ptr_target {
private:
T target_;
public:
IntrusivePtrTargetWrapper() = delete;
IntrusivePtrTargetWrapper(const T& target): target_(target) {}
IntrusivePtrTargetWrapper(T&& target): target_(std::move(target)) {}
T& get_target() {
return target_;
}
};
using IDeepTensorWrapper = IntrusivePtrTargetWrapper<ideep::tensor>;
using IDeepTensorWrapperPtr = c10::intrusive_ptr<IDeepTensorWrapper>;
using MKLDNNTensorImpl = OpaqueTensorImpl<IDeepTensorWrapperPtr>;
using MKLDNNTensor = Tensor;
ideep::tensor::data_type get_mkldnn_dtype(ScalarType type) {
switch (type) {
case ScalarType::Float:
return ideep::tensor::data_type::f32;
case ScalarType::QInt32:
return ideep::tensor::data_type::s32;
case ScalarType::QInt8:
case ScalarType::Char:
return ideep::tensor::data_type::s8;
case ScalarType::QUInt8:
case ScalarType::Byte:
return ideep::tensor::data_type::u8;
case ScalarType::BFloat16:
return ideep::tensor::data_type::bf16;
case ScalarType::Half:
return ideep::tensor::data_type::f16;
default:
TORCH_CHECK(false, "get_mkldnn_dtype: unsupported data type");
}
}
Tensor new_with_itensor_mkldnn(ideep::tensor&& it, c10::optional<ScalarType> dtype, c10::optional<Device> device) {
// NOTE: int32_t dims from ideep::tensor but sizes needs int64_t
// TODO: support int64_t dims in ideep::tensor to avoid extra conversion
auto dims = it.get_dims();
IDeepTensorWrapperPtr handle = c10::make_intrusive<IDeepTensorWrapper>(std::move(it));
caffe2::TypeMeta dtype_ = scalarTypeToTypeMeta(dtype_or_default(dtype));
Device device_ = device_or_default(device);
return detail::make_tensor<MKLDNNTensorImpl>(
DispatchKeySet(DispatchKey::MkldnnCPU),
dtype_, device_, handle,
std::vector<int64_t>(dims.begin(), dims.end()));
}
ideep::tensor& itensor_from_mkldnn(const MKLDNNTensor& mkldnn_tensor) {
TORCH_CHECK(mkldnn_tensor.is_mkldnn(),
"itensor_from_mkldnn expects MKL-DNN tensor input");
MKLDNNTensorImpl *mklimpl = static_cast<MKLDNNTensorImpl *>(mkldnn_tensor.unsafeGetTensorImpl());
return mklimpl->unsafe_opaque_handle()->get_target();
}
ideep::tensor itensor_view_from_dense(const Tensor& tensor) {
TORCH_CHECK(
tensor.device().is_cpu(),
"itensor_view_from_dense expects CPU tensor input");
TORCH_CHECK(
tensor.layout() == Layout::Strided,
"itensor_view_from_dense expects dense tensor input");
if (tensor.scalar_type() == ScalarType::Float) {
return {{tensor.sizes().vec(),
ideep::tensor::data_type::f32,
tensor.strides().vec()},
tensor.template data_ptr<float>()};
}
else if (tensor.scalar_type() == ScalarType::BFloat16) {
return {{tensor.sizes().vec(),
ideep::tensor::data_type::bf16,
tensor.strides().vec()},
tensor.template data_ptr<BFloat16>()};
}
else if (tensor.scalar_type() == ScalarType::Half) {
return {{tensor.sizes().vec(),
ideep::tensor::data_type::f16,
tensor.strides().vec()},
tensor.template data_ptr<Half>()};
}
else if (tensor.scalar_type() == ScalarType::Byte) {
return {{tensor.sizes().vec(),
ideep::tensor::data_type::u8,
tensor.strides().vec()},
tensor.data_ptr()};
}
else if (tensor.scalar_type() == ScalarType::Char) {
return {{tensor.sizes().vec(),
ideep::tensor::data_type::s8,
tensor.strides().vec()},
tensor.data_ptr()};
}
else {
TORCH_CHECK(false, "itensor_view_from_dense expects float/bfloat16/half/int8 tensor input");
}
}
ideep::tensor itensor_view_from_dense(
const at::Tensor& tensor,
const ideep::tensor::desc& desc) {
TORCH_CHECK(
tensor.device().is_cpu(),
"itensor_view_from_dense expects CPU tensor input");
TORCH_CHECK(
tensor.layout() == at::Layout::Strided,
"itensor_view_from_dense expects dense tensor input");
TORCH_CHECK(
tensor.scalar_type() == at::ScalarType::Float ||
tensor.scalar_type() == at::ScalarType::BFloat16 ||
tensor.scalar_type() == at::ScalarType::Half,
"itensor_view_from_dense expects float, bfloat16 or half tensor input");
return {desc, tensor.data_ptr()};
}
// Helper function for getting an ideep tensor out of an aten Tensor.
// Note in case the aten Tensor is a dense tensor, the returned ideep
// tensor is just a view of the storage of the aten dense tensor, so
// caller needs to make sure the aten dense tensor's lifetime is
// longer than the ideep tensor.
ideep::tensor itensor_from_tensor(const Tensor& tensor) {
if (tensor.is_mkldnn()) {
return itensor_from_mkldnn(tensor);
} else {
return itensor_view_from_dense(tensor);
}
}
int set_verbose(int level) {
return ideep::utils::set_verbose(level);
}
}}
#endif // AT_MKLDNN_ENABLED()