-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathdistillation_big_only.py
267 lines (202 loc) · 10 KB
/
distillation_big_only.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import torch
import numpy as np
import parameters
import utils
from data import get_dataloader
import routines
import baseline
import wasserstein_ensemble
import os
import sys
from model import get_model_from_name
import copy
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
def recheck_accuracy(args, models, test_loader):
# Additional flag of recheck_acc to supplement the legacy flag recheck_cifar
if args.recheck_cifar or args.recheck_acc:
recheck_accuracies = []
for model in models:
log_dict = {}
log_dict['test_losses'] = []
recheck_accuracies.append(routines.test(args, model, test_loader, log_dict))
print("Rechecked accuracies are ", recheck_accuracies)
def get_dataloaders(args, config):
if args.dataset == 'mnist':
train_loader, test_loader = get_dataloader(args)
retrain_loader, _ = get_dataloader(args, no_randomness=args.no_random_trainloaders)
elif args.dataset.lower()[0:7] == 'cifar10':
assert config is not None
args.cifar_init_lr = config['optimizer_learning_rate']
if args.second_model_name is not None:
assert second_config is not None
assert args.cifar_init_lr == second_config['optimizer_learning_rate']
# also the below things should be fine as it is just dataloader loading!
print('loading {} dataloaders'.format(args.dataset.lower()))
train_loader, test_loader = cifar_train.get_dataset(config)
retrain_loader, _ = cifar_train.get_dataset(config, no_randomness=args.no_random_trainloaders)
return train_loader, test_loader, retrain_loader
def load_pretrained_models(args, config, second_config=None):
print("------- Loading pre-trained models -------")
ensemble_experiment = args.load_models.split('/')
if len(ensemble_experiment) > 1:
# both the path and name of the experiment have been specified
ensemble_dir = args.load_models
elif len(ensemble_experiment) == 1:
# otherwise append the directory before!
ensemble_root_dir = "{}/{}_models/".format(args.baseroot, (args.dataset).lower())
ensemble_dir = ensemble_root_dir + args.load_models
models = []
accuracies = []
for idx in range(args.num_models):
print("loading model with idx {} and checkpoint_type is {}".format(idx, args.ckpt_type))
if args.dataset.lower()[0:7] == 'cifar10' and (
args.model_name.lower()[0:5] == 'vgg11' or args.model_name.lower()[0:6] == 'resnet'):
if idx == 0:
config_used = config
elif idx == 1:
config_used = second_config
model, accuracy = cifar_train.get_pretrained_model(
config_used, os.path.join(ensemble_dir, 'model_{}/{}.checkpoint'.format(idx, args.ckpt_type)),
args.gpu_id, relu_inplace=not args.prelu_acts # if you want pre-relu acts, set relu_inplace to False
)
else:
model, accuracy = routines.get_pretrained_model(
args, os.path.join(ensemble_dir, 'model_{}/{}.checkpoint'.format(idx, args.ckpt_type)), idx=idx
)
models.append(model)
accuracies.append(accuracy)
print("Done loading all the models")
return models, accuracies
def test_model(args, model, test_loader):
log_dict = {}
log_dict['test_losses'] = []
return routines.test(args, model, test_loader, log_dict)
def loss_fn_kd(outputs, labels, teacher_outputs, params):
# Source: https://github.com/peterliht/knowledge-distillation-pytorch/blob/master/model/net.py
"""
Compute the knowledge-distillation (KD) loss given outputs, labels.
"Hyperparameters": temperature and alpha
NOTE: the KL Divergence for PyTorch comparing the softmaxs of teacher
and student expects the input tensor to be log probabilities! See Issue #2
"""
alpha = params.alpha
T = params.temperature
KD_loss = nn.KLDivLoss()(F.log_softmax(outputs/T, dim=1),
F.softmax(teacher_outputs/T, dim=1)) * (alpha * T * T) + \
F.cross_entropy(outputs, labels) * (1. - alpha)
return KD_loss
def distillation(args, teachers, student, train_loader, test_loader, device):
# Inspiration: https://github.com/peterliht/knowledge-distillation-pytorch/blob/master/evaluate.py
for teacher in teachers:
teacher.eval()
optimizer = optim.SGD(student.parameters(), lr=args.learning_rate,
momentum=args.momentum)
log_dict = {}
log_dict['train_losses'] = []
log_dict['train_counter'] = []
log_dict['test_losses'] = []
accuracies = []
accuracies.append(routines.test(args, student, test_loader, log_dict))
for epoch_idx in range(0, args.dist_epochs):
student.train()
for batch_idx, (data_batch, labels_batch) in enumerate(train_loader):
# move to GPU if available
if args.gpu_id != -1:
data_batch, labels_batch = data_batch.to(device), labels_batch.to(device)
# compute mean teacher output
teacher_outputs = []
for teacher in teachers:
teacher_outputs.append(teacher(data_batch, disable_logits=True))
teacher_outputs = torch.stack(teacher_outputs)
teacher_outputs = teacher_outputs.mean(dim=0)
optimizer.zero_grad()
# get student output
student_output = student(data_batch, disable_logits=True)
# knowledge distillation loss
loss = loss_fn_kd(student_output, labels_batch, teacher_outputs, args)
loss.backward()
# update student
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch_idx, batch_idx * len(data_batch), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
log_dict['train_losses'].append(loss.item())
log_dict['train_counter'].append((batch_idx * 64) + ((epoch_idx - 1) * len(train_loader.dataset)))
accuracies.append(routines.test(args, student, test_loader, log_dict))
return student, accuracies
if __name__ == '__main__':
NUMPY_SEED = 100
TORCH_SEED = 100
torch.manual_seed(TORCH_SEED)
np.random.seed(NUMPY_SEED)
print("------- Setting up parameters -------")
args = parameters.get_parameters()
if args.width_ratio != 1:
if not args.proper_marginals:
print('setting proper marginals to True (needed for width_ratio!=1 mode)')
args.proper_marginals = True
if args.eval_aligned:
print('setting eval aligned to False (needed for width_ratio!=1 mode)')
args.eval_aligned = False
print("The parameters are: \n", args)
config, second_config = utils._get_config(args)
setattr(args, 'autoencoder', False)
train_loader, test_loader, retrain_loader = get_dataloaders(args, config)
models, accuracies = load_pretrained_models(args, config)
recheck_accuracy(args, models, test_loader)
for idx, model in enumerate(models):
print(f'model {idx} size is ', utils.get_model_size(model))
test_model(args, model, test_loader)
if args.gpu_id == -1:
device = torch.device('cpu')
else:
device = torch.device('cuda:{}'.format(args.gpu_id))
print("------- Prediction based ensembling -------")
prediction_acc = baseline.prediction_ensembling(args, models, test_loader)
print("------- Geometric Ensembling -------")
activations = utils.get_model_activations(args, models, config=config)
geometric_acc, geometric_model = wasserstein_ensemble.geometric_ensembling_modularized(args, models, train_loader,
test_loader, activations)
utils.get_model_size(geometric_model)
print("------- Distillation!! -------")
distilled_model = get_model_from_name(args, idx=1)
distilled_model = distilled_model.to(device)
utils.get_model_size(distilled_model)
distill_scratch_init_acc = test_model(args, distilled_model, test_loader)
distillation_results = {}
print("------- Distilling Big to scratch -------")
_, acc = distillation(args, [models[0]], copy.deepcopy(distilled_model), train_loader, test_loader, device)
distillation_results['scratch_distill_from_big'] = acc
print("------- Distilling Big to OT Avg. -------")
_, acc = distillation(args, [models[0]], copy.deepcopy(geometric_model), train_loader, test_loader, device)
distillation_results['geometric_distill_from_big'] = acc
print("------- Distilling Big to Model B -------")
_, acc = distillation(args, [models[0]], copy.deepcopy(models[1]), train_loader, test_loader, device)
distillation_results['model_b_distill_from_big'] = acc
if args.save_result_file != '':
results_dic = {}
results_dic['exp_name'] = args.exp_name
for idx, acc in enumerate(accuracies):
results_dic['model{}_acc'.format(idx)] = acc
results_dic['geometric_acc'] = geometric_acc
results_dic['prediction_acc'] = prediction_acc
results_dic['distill_scratch_init_acc'] = distill_scratch_init_acc
# distillation acc results
for distill_name, acc in distillation_results.items():
results_dic[f'best_{distill_name}'] = max(acc)
for distill_name, acc in distillation_results.items():
results_dic[f'idx_{distill_name}'] = np.argmax(np.array(acc))
for distill_name, acc in distillation_results.items():
results_dic[f'acc_{distill_name}'] = acc
utils.save_results_params_csv(
os.path.join(args.csv_dir, args.save_result_file),
results_dic,
args
)
print('----- Saved results at {} ------'.format(args.save_result_file))
print(results_dic)
print("FYI: the parameters were: \n", args)
print("------- ------- ------- ------- -------")