-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtutorial_3.tex
278 lines (221 loc) · 7.61 KB
/
tutorial_3.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
\documentclass[handout]{beamer}
\usepackage[utf8]{inputenc}
\usepackage{amsmath, pdfpages, pdflscape, lscape, color, listings, hyperref, amssymb, graphicx,textcomp,varioref, afterpage, subcaption, float, bm, tikz, multicol}
\global
\newcommand{\Fig}[1]{Figure \ref{#1}}
\newcommand{\fig}[1]{figure \ref{#1}}
\newcommand{\tab}[1]{table \ref{#1}}
\newcommand{\eq}[1]{equation \ref{#1}}
\newcommand{\Eq}[1]{Equation \ref{#1}}
\newcommand{\alg}[1]{algorithm \ref{#1}}
\newcommand{\Alg}[1]{Algorithm \ref{#1}}
\newcommand{\chp}[1]{chapter \ref{#1}}
\newcommand{\Chp}[1]{Chapter \ref{#1}}
\newcommand{\e}[1]{\cdot 10^{#1}}
\newcommand{\h}{\hbar}
\newcommand{\der}[2]{\frac{\partial #1}{\partial #2}}
\newcommand{\dder}[2]{\frac{\partial^2 #1}{\partial #2^2}}
\newcommand{\p}{\boldsymbol{P}}
\newcommand{\q}{\boldsymbol{q}}
\newcommand{\norm}[1]{\left\lVert#1\right\rVert}
\newcommand{\coef}[2]{\frac{\langle #1,#2\rangle_{\!Q}}{\norm{#2}^}}
\newcommand{\inner}[1]{\left\langle #1 \right\rangle_{\!Q}}
\newcommand{\E}[1]{\mbox{E}\!\left( #1 \right)}
\newcommand{\Var}[1]{\mbox{Var}\!\left( #1 \right)}
\newenvironment{test}[1]
{
\usebackgroundtemplate{}
\color{gray!30!black}
\begin{tikzpicture}[remember picture, overlay]
\node[anchor = center, opacity=.25] (image) at (current page.center) {\includegraphics[scale=0.25]{chaospy_logo.jpg}};
\end{tikzpicture}
\begin{frame}[fragile,enviroment=chaospy]
}
{
\end{frame}
}
\lstset{
escapeinside={||},
basicstyle=\ttfamily\footnotesize,
columns=fixed
}
\newenvironment{chaospy}[1]
{\color{gray!30!black}
\color{gray!30!black}
\usebackgroundtemplate{
\begin{tikzpicture}[remember picture, overlay]
\node[anchor = center, opacity=.25] (image) at (current page.center) {\includegraphics[scale=0.25]{chaospy_logo.jpg}};
\end{tikzpicture}}
\begin{frame}[fragile,environment=chaospy]
\frametitle{{#1}}}
{\end{frame}}
\definecolor{keywords}{RGB}{255,0,90}
\definecolor{comments}{RGB}{0,0,113}
\definecolor{red}{RGB}{160,0,0}
\definecolor{green}{RGB}{0,150,0}
\usetheme{kalkulo}
\graphicspath{{./figures/}}
\title{Polynomial chaos expansions part 3: Intrusive Galerkin method}
\author{Jonathan Feinberg and Simen Tennøe}
\begin{document}
\begin{frame}
\maketitle
\end{frame}
\begin{frame}[fragile]{Relevant links}
\begin{center}
\includegraphics[width=.5\textwidth]{chaospy_logo.jpg}
\end{center}
\begin{alert}{A very basic introduction to scientific Python programming:}
\scriptsize
\href{http://hplgit.github.io/bumpy/doc/pub/sphinx-basics/index.html}{http://hplgit.github.io/bumpy/doc/pub/sphinx-basics/index.html}\\
%\verb;http://hplgit.github.io/bumpy/doc/pub/sphinx-basics/index.html;
\end{alert}
\begin{alert}{Installation instructions:}\\
\scriptsize
\href{https://github.com/hplgit/chaospy}{https://github.com/hplgit/chaospy}\\
%\verb;http://github.com/hplgit/chaospy/;
\end{alert}
% \begin{alert}{Interactive session:}\\
% \scriptsize
% \href{http://10.50.3.247:8888/}{http://10.50.3.247:8888/}
%
% %\verb;http://10.50.3.247:8888/;
% \end{alert}
\end{frame}
\begin{frame}
\frametitle{Repetition of our model problem}
We have a simple differential equation
\begin{align*}
\frac{d u(x)}{dx} & =-au(x),\qquad u(0) = I
\end{align*}
\pause
with the solution
\[u(x) = Ie^{-ax}\]
\pause
with two random input variables:
\[a \sim \text{Uniform(0, 0.1)}, \qquad I \sim \text{Uniform(8, 10)}\]
Want to compute $\E{u}$ and $\Var{u}$
\end{frame}
\begin{frame}
\frametitle{The Galerkin method is a projection method for approximating functions}
Given a function space $V$ and inner product on $V$ $\inner{u,v}=\int_0^Luvdx$
\begin{align*}
u'(x) &= g(x) \\
\int_0^L u'(x) v(x)dx &= \int_0^L g(x)v(x)dx,\quad\forall v\in V\\
\inner{u',v} &= \inner{g,v}\quad\mbox{(projection)}
\end{align*}
With $u(x; q) \approx \hat u_M(x; q) = \sum_{n=0}^N c_n(x) P_n(q)$ this leads to a linear system for
the coefficients $c_n$.
\end{frame}
\begin{frame}
\frametitle{Calculating initial condition using Galerkin}
\begin{align*}
\hat u_M(0) &= I, & \hat u_M &= \sum_{n=0}^N c_n(x)P_n(q)\\
\onslide<2-> {\sum_{n=0}^Nc_n(0)P_n &= I}\\
\onslide<3-> {\inner{\sum_{n=0}^Nc_n(0)P_n,P_k} &= \inner{ I,P_k}
& k&=0,\dots,N}\\
\onslide<4-> {\sum_{n=0}^Nc_n(0)\inner{ P_n,P_k} &= \inner{ I,P_k} }\\
\onslide<5-> {c_k(0)\inner{ P_k, P_k} &= \inner{ I,P_k} }\\
\onslide<6-> {c_k(0) &= \frac{\inner{I, P_k}}{\inner{P_k, P_k}} = \frac{E(IP_k)}{E(P_k^2)}}\\
\end{align*}
\end{frame}
\begin{frame}
\frametitle{Galerkin applied to the differential equation}
% \scriptsize
\footnotesize
\begin{align*}
\frac{d}{dx}\left(\hat u_M \right) &= -a \hat u_M\\
\onslide<2-> {\frac{d}{dx}\left(\sum_{n=0}^Nc_nP_n \right) &= -a \sum_{n=0}^Nc_nP_n}\\
\onslide<3-> {\inner{ \frac{d}{dx}\left(\sum_{n=0}^Nc_nP_n
\right),P_k} &= \inner{-a \sum_{n=0}^Nc_nP_n,P_k} &
k=0,\dots,N}\\
\onslide<4-> {\frac{d}{dx}\sum_{n=0}^Nc_n\inner{ P_n ,P_k} &= -\sum_{n=0}^Nc_n\inner{ aP_n,P_k}}\\
\onslide<5-> {\frac d{dx} c_k \inner{P_k, P_k}
&= -\sum_{n=0}^N c_n \inner{aP_n, P_k} }\\
\onslide<6-> {\frac{d}{dx}c_k
&= -\sum_{n=0}^N c_n \frac{\inner{aP_n,P_k}}{\inner{P_k, P_k}}
= -\sum_{n=0}^N c_n \frac{\E{aP_nP_k}}{\E{P_k^2}}}
\end{align*}
\end{frame}
\begin{frame}
\frametitle{The Galerkin Projection results in a coupled $(N+1)\times (N+1)$ system of differential equations}
\begin{align*}
\frac{d}{dx}c_k(x) &= -\sum_{n=0}^N c_n(x) \frac{E(aP_nP_k)}{E(P_k^2)}
& k=0,\dots,N\\
c_k(0) &= \frac{E(IP_k)}{E(P_k^2)}
\end{align*}
\[ \frac{d}{dx}\bm{c} = -\bm{M}\bm{c},\quad M_{kn}= \frac{E(aP_nP_k)}{E(P_k^2)}\]
\end{frame}
\begin{frame}
\frametitle{The differential equation system is very sparse (mostly zeros)}
\begin{columns}
\column{.5\textwidth}
\begin{center}
\begin{align*}
E(P_nP_k)
\end{align*}
\includegraphics[width=0.9\textwidth]{binary_matrix1.png}
\end{center}
\column{.5\textwidth}
\begin{center}
\begin{align*}
E(aP_nP_k)
\end{align*}
\includegraphics[width=0.9\textwidth]{binary_matrix.png}
\end{center}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Intrusive Galerkin usually converges faster}
\begin{itemize}[<+->]
\item Original problem: one scalar differential equation
\item Stochastic UQ problem: system of differential equations
\item The method is called \emph{intrusive Galerkin}
\item The original solver cannot be reused
\end{itemize}
\end{frame}
\begin{chaospy}{Solving the set of differential equations
numerically}
\scriptsize
\begin{lstlisting}[language=python]
import chaospy as cp
import numpy as np
import odespy
|\pause|
dist_a = cp.Uniform(0, 0.1)
dist_I = cp.Uniform(8, 10)
dist = cp.J(dist_a, dist_I) # joint multivariate dist
|\pause|
P, norms = cp.orth_ttr(n, dist, retall=True)|\pause|
variable_a, variable_I = cp.variable(2)
\end{lstlisting}
\end{chaospy}
\begin{chaospy}{Solving the set of differential equations numerically}
\scriptsize
\pause
\begin{lstlisting}[language=python]
PP = cp.outer(P, P)
E_aPP = cp.E(variable_a*PP, dist)
E_IP = cp.E(variable_I*P, dist)
|\pause|
def right_hand_side(c, x): # c' = right_hand_side(c, x)
return -np.dot(E_aPP, c)/norms # -M*c
initial_condition = E_IP/norms
|\pause|
solver = odespy.RK4(right_hand_side)
solver.set_initial_condition(initial_condition)
|\pause|
x = np.linspace(0, 10, 1000)
c = solver.solve(x)[0]
|\pause|
u_hat = cp.dot(P, c)
\end{lstlisting}
\end{chaospy}
\begin{frame}
\frametitle{Intrusive Galerkin usually converges faster}
\begin{figure}
%\caption{Binary matrix of $E(aP_nP_k)$}
\includegraphics[width=0.85\textwidth]{convergence_gallerkin.png}
\end{figure}
\end{frame}
\end{document}