-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess.py
181 lines (131 loc) · 6.05 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import os
import csv
from datetime import datetime, timezone, timedelta
import math
import numpy as np
from operator import itemgetter
import random
import sys
import csv
import argparse
import shutil
import matplotlib.pyplot as plt
from helper_function import \
compute_start_end, \
process_gt_file, \
process_imu_file, \
generate_gt, \
output_check, \
read_tap
threshold_ts = 100
PIXEL_TO_METER_SCALE = 13.913
def save_data_to_csv(path_data, csv_file_path):
with open(csv_file_path, 'w', newline='') as csvfile:
fieldnames = list(path_data.keys())
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()
for i in range(len(path_data[fieldnames[0]])):
writer.writerow({
f: path_data[f][i] for f in fieldnames
})
def process_path(folder_path, transform):
timestamp_ms_start, timestamp_ms_end = compute_start_end(folder_path)
#Retrieve gt
gt_path = os.path.join(folder_path, 'Gt', 'vis.txt')
gt_data = process_gt_file(gt_path, timestamp_ms_start, timestamp_ms_end)
#Synchronize gts
#Retrieve mag
mag_path = os.path.join(folder_path, 'Sensor', 'imu.txt')
full_mag_data = process_imu_file(mag_path, transform= transform)
matched_idxes, syn_gt_data, syn_mag_data = generate_gt(gt_data, full_mag_data)
output_check(matched_idxes, full_mag_data, gt_data, syn_gt_data, syn_mag_data, threshold_ts)
return syn_gt_data, syn_mag_data
def train_test_split(process_dir, test_ratio=0.1):
folders = [f for f in os.listdir(process_dir) if os.path.isdir(os.path.join(process_dir, f))]
random.shuffle(folders)
split_index = int(len(folders) * (1 - test_ratio))
train_folders = folders[:split_index]
test_folders = folders[split_index:]
return train_folders, test_folders
#THIS only apply to data with more than 1 taps!
#Here we use translation.z and translation.y as x and y
def local2gloabl(folder_dir, gt_data):
print(f"Processing {folder_dir}")
#1. read taps.txt
tap_file_path = os.path.join(folder_dir, "Gt", "taps.txt")
tap_data = read_tap(tap_file_path)
#Computer the direction
scale = 1 if tap_data['x'][-1] - tap_data['x'][0] > 0 else -1
#Get the global start position in meter
x_local2global = tap_data['x'][0] / PIXEL_TO_METER_SCALE
y_local2global = tap_data['y'][0] / PIXEL_TO_METER_SCALE
print(f"Start: {x_local2global, y_local2global}")
print(f"End: {tap_data['x'][-1] / PIXEL_TO_METER_SCALE, tap_data['y'][-1] / PIXEL_TO_METER_SCALE } ")
#convert gt
gt_keys = list(gt_data.keys())
gt_data_global = {k : [] for k in gt_keys[:-1]}
for ts, x, y in zip(gt_data['ts'], gt_data['z'], gt_data['y']):
gt_data_global['ts'].append(ts)
gt_data_global['x'].append(x_local2global + x * scale)
gt_data_global['y'].append(y_local2global + y)
return tap_data, gt_data_global
def plot_multiple_paths(all_gt_global, labels= None, equal=False):
fig, ax = plt.subplots(figsize=(10, 3))
starts = [0 for i in range(len(all_gt_global))]
ends = [len(gt['ts']) for gt in all_gt_global]
x_list = [all_gt_global[i]['x'] for i in range(len(all_gt_global))]
y_list = [all_gt_global[i]['y'] for i in range(len(all_gt_global))]
if labels is None:
labels = [f'Path {i+1}' for i in range(len(x_list))]
colors = plt.cm.rainbow(np.linspace(0, 1, len(x_list)))
for i, (x, y, start, end, label, color) in enumerate(zip(x_list, y_list, starts, ends, labels, colors)):
# Plot the path
ax.plot(x[start:end], y[start:end], '-o', markersize=4, label=label, color=color)
# Plot start and end points
ax.plot(x[start], y[start], 'go', markersize=10)
ax.plot(x[end-1], y[end-1], 'ro', markersize=10)
if equal:
ax.set_aspect('equal', adjustable='box')
ax.set_xlabel('x coordinate')
ax.set_ylabel('y coordinate')
ax.set_title('Multiple Paths')
ax.legend()
ax.grid(True)
plt.tight_layout()
plt.show()
def main(args):
root_dir = args.root_dir
path_num = args.path_num
process_dir = os.path.join(root_dir, path_num)
transform_yes = bool(args.transform)
transform = 'transformed' if transform_yes else 'no_transform'
# Perform train-test split
train_folders, test_folders = train_test_split(process_dir, args.test_ratio)
all_gt_global = []
for split, folders in [('train', train_folders), ('test', test_folders)]:
for folder_name in folders:
folder_path = os.path.join(process_dir, folder_name)
print(f"Processing {folder_name} for {split} set")
syn_gt_data, syn_mag_data = process_path(folder_path, args.transform)
#convert from local to global frame
tap_data, gt_data_global = local2gloabl(folder_path, syn_gt_data)
all_gt_global.append(gt_data_global)
# Save gt and mag to csv file
save_dir = os.path.join('processed', transform , path_num, split, folder_name) #change
print(f"Save to {save_dir}")
os.makedirs(save_dir, exist_ok=True)
gt_csv_path = os.path.join(save_dir, 'gt.csv')
save_data_to_csv(gt_data_global, gt_csv_path)
mag_csv_path = os.path.join(save_dir, 'mag.csv')
save_data_to_csv(syn_mag_data, mag_csv_path)
print(f"Processing {save_dir} for {split} set successfully\n")
plot_multiple_paths(all_gt_global, equal = False)
return 0
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--root_dir", type=str, default="hkust4f", help="The root dir to process")
parser.add_argument("--path_num", type=str, default="new", help="The path to process")
parser.add_argument("--transform", type=bool, default=False, help="Transform the magnetic signals into other forms")
parser.add_argument("--test_ratio", type=float, default=0.1, help="Ratio of data to use for testing")
args = parser.parse_args()
main(args)