-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·761 lines (669 loc) · 34.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
#!/usr/bin/env python
import argparse
import builtins
import math
import os
import random
import shutil
import time
from datetime import datetime
import warnings
from functools import partial
import multiprocessing
from prettytable import PrettyTable
from utils.logging import get_logger
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.multiprocessing as mp
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as torchvision_models
from torch.utils.tensorboard import SummaryWriter
from torch.hub import load_state_dict_from_url
import moco.builder
import moco.loader
import moco.optimizer
import swin_transformer
from semclData import semclDataset
from utils import ext_transforms as et
torchvision_model_names = sorted(name for name in torchvision_models.__dict__
if name.islower() and not name.startswith("__")
and callable(torchvision_models.__dict__[name]))
model_names = ['swin_tiny', 'swin_small', 'swin_base',
'swin_large'] + torchvision_model_names
pretrained_weight_url = {
'resnet50': 'https://dl.fbaipublicfiles.com/moco-v3/r-50-1000ep/r-50-1000ep.pth.tar',
'resnet101': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet101_a1h-36d3f2aa.pth',
'swin_tiny': 'https://github.com/SwinTransformer/storage/releases/download/v1.0.8/swin_tiny_patch4_window7_224_22k.pth',
'swin_small': 'https://github.com/SwinTransformer/storage/releases/download/v1.0.8/swin_small_patch4_window7_224_22k.pth',
'swin_base': 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_22k.pth',
'swin_large': 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window7_224_22k.pth',
}
moco_m_global = None
iter_mode_global = None
forw_backw_iters = None
num_steps = None
parser = argparse.ArgumentParser(description='SemCL Pre-Training')
parser.add_argument('--dataroot', metavar='Path2ContrastivePairs', default='data',
help='path to dataset')
parser.add_argument('-a', '--arch', metavar='ARCH', default='swin_tiny',
type=str, choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: swin_tiny)')
parser.add_argument('--pretrained', default='', type=str, metavar='PATH2pretrainedWeights',
help="Path to pretrained weights having same architecture with --arch option.")
parser.add_argument('-j', '--workers', default=multiprocessing.cpu_count(), type=int, metavar='num_workers_per_gpu',
help='number of data loading workers (default: use multiprocessing.cpu_count() for every GPU)')
parser.add_argument('-e', '--epochs', default=None, type=int, metavar='num_epoch',
help='number of total epochs to run')
parser.add_argument('--iters', default=None, type=int, metavar='num_iter',
help='number of total iterations to update the model')
parser.add_argument('--start-epoch', default=0, type=int, metavar='start_epoch',
help='manual epoch number (useful on restarts)')
parser.add_argument('--cropsize', default=224, type=int, metavar='cropsize',
help='image crop size. Swin dopted 224*224.')
parser.add_argument('-b', '--batch-size', default=64, type=int,
metavar='batchsize',
help='mini-batch size (default: 64), this is the total '
'batch size of all GPUs on all nodes when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--grad-accum', default=1, type=int,
help='accumulation steps. Equivalent batch size would be batch_size*grad_accum.')
parser.add_argument('--lr', '--learning-rate', default=1.5e-4, type=float,
metavar='LR', help='initial (base) learning rate', dest='lr')
parser.add_argument('--momentum', default=0.9, type=float, metavar="moco's momentum",
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=0.1, type=float,
metavar='weight_decay', help='weight decay (default: 0.1)',
dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=1000, type=int,
metavar='print_frequency', help='print frequency (default: 1000)')
parser.add_argument('--resume', default='', type=str, metavar='PATH2checkpoint',
help='path to latest checkpoint (default: none)')
parser.add_argument('--world-size', default=-1, type=int,
help='number of nodes for distributed training')
parser.add_argument('--rank', default=-1, type=int,
help='node rank for distributed training')
parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str,
help='distributed backend')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use.')
parser.add_argument('--multiprocessing-distributed', action='store_true',
help='Use multi-processing distributed training to launch '
'N processes per node, which has N GPUs. This is the '
'fastest way to use PyTorch for either single node or '
'multi node data parallel training')
# moco specific configs:
parser.add_argument('--moco-dim', default=256, type=int,
help='feature dimension (default: 256)')
parser.add_argument('--moco-mlp-dim', default=4096, type=int,
help='hidden dimension in MLPs (default: 4096)')
parser.add_argument('--moco-m', default=0.99, type=float,
help='moco momentum of updating momentum encoder (default: 0.99)')
parser.add_argument('--moco-m-cos', action='store_true',
help='gradually increase moco momentum to 1 with a '
'half-cycle cosine schedule')
parser.add_argument('--moco-t', default=0.2, type=float,
help='softmax temperature (default: 0.2)')
# vit specific configs:
parser.add_argument('--stop-grad-conv1', action='store_true',
help='stop-grad after first conv, or patch embedding')
# other upgrades
parser.add_argument('--optimizer', default='adamw', type=str,
choices=['lars', 'adamw'],
help='optimizer used (default: lars)')
parser.add_argument('--warmup-ratio', default=None, type=float, metavar='warmup_ratio',
help='number of warmup iters=warmup_ratio*total_update_iter')
parser.add_argument('--crop-min', default=0.08, type=float,
help='minimum scale for random cropping (default: 0.08)')
# choose datasets to load
parser.add_argument('--dataset', default=['coco', 'ade', 'voc'], nargs='+',
help='arbitrary combine coco, ade20k and voc2012 datasets')
# choose negative mode
parser.add_argument('--loss-mode', default='paired', type=str,
choices=['paired', 'mocov3'],
help='Determines how the (optional) negative_keys are handled. Value must be one of ["paired", "mocov3"], where the latter means original infoNCE loss.')
# set checkpoints output dir
parser.add_argument('--output-dir', default='.', type=str,
help='Output path. Default is current path.')
# deeplab
parser.add_argument("--output-stride", default=None, choices=[None, 8, 16],
help="This option is valid for only resnet backbones.")
tb = PrettyTable(field_names=["key", "value"])
start_time = datetime.now()
def main():
print(f"{start_time.strftime('%Y/%m/%d %H:%M:%S.%f')}: Training started.")
print(f"Use Pytorch {torch.__version__} with cuda {torch.version.cuda}")
args = parser.parse_args()
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
if args.gpu is not None:
warnings.warn(
'You have chosen a specific GPU. This will completely disable data parallelism.')
if args.dist_url == "env://" and args.world_size == -1:
args.world_size = int(os.environ["WORLD_SIZE"])
args.distributed = args.world_size > 1 or args.multiprocessing_distributed
assert args.distributed, "SyncBN depends on distributed training. If you really want to continue, comment out this line and take the risk of poor reults."
ngpus_per_node = torch.cuda.device_count()
# Retrieve pretrained weights
if len(args.pretrained) == 0:
args.pretrained = pretrained_weight_url[args.arch]
print("Use pretrained weight at", args.pretrained)
if args.multiprocessing_distributed:
# Since we have ngpus_per_node processes per node, the total world_size
# needs to be adjusted accordingly
args.world_size = ngpus_per_node * args.world_size
args.workers = args.workers//ngpus_per_node
# Use torch.multiprocessing.spawn to launch distributed processes: the
# main_worker process function
mp.spawn(main_worker, nprocs=ngpus_per_node,
args=(ngpus_per_node, args))
else:
# Simply call main_worker function
main_worker(args.gpu, ngpus_per_node, args)
end_time = datetime.now()
print(f"{end_time.strftime('%Y/%m/%d %H:%M:%S.%f')}: Training finished.")
train_time_consume = end_time-start_time
print("This training process takes ", str(train_time_consume))
def main_worker(gpu, ngpus_per_node, args):
args.gpu = gpu
global tb
# suppress printing if not first GPU on each node
if args.multiprocessing_distributed and args.gpu != 0:
def print_pass(*args):
pass
builtins.print = print_pass
global iter_mode_global # Even global variables cannot share across processings. See https://stackoverflow.com/a/11215750. Solution is to set these vars inside each processing.
if args.iters is not None and args.epochs is not None:
raise AssertionError(
"You can set either `--iters` or `--epochs`, not both.")
elif args.iters is not None and args.epochs is None:
iter_mode_global = 'iters'
elif args.iters is None and args.epochs is not None:
iter_mode_global = 'epochs'
elif args.iters is None and args.epochs is None:
args.iters = 30000
print(
f"Neither `--iters` nor `--epochs` is given, set total iterations to {args.iters}")
iter_mode_global = 'iters'
print(f"Iteration mode: {iter_mode_global}")
if args.multiprocessing_distributed:
print(f"Use GPU: {args.gpu} for printing")
elif args.multiprocessing_distributed is False and args.gpu is not None:
print(f"Use GPU: {args.gpu} for traning")
if args.distributed:
if args.dist_url == "env://" and args.rank == -1:
args.rank = int(os.environ["RANK"])
if args.multiprocessing_distributed:
# For multiprocessing distributed training, rank needs to be the
# global rank among all the processes
tb.add_row(["DDP node rank", args.rank])
args.rank = args.rank * ngpus_per_node + gpu
print(
f"[DDP] Attempt to initialize init_process_group() via {args.dist_url} with backend {args.dist_backend}")
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
print("[DDP] init_process_group() is initialized via backend:",
dist.get_backend())
dist.barrier()
if args.gpu == 0:
tb.add_row(["DDP world_size", dist.get_world_size()])
if args.loss_mode == 'paired':
print("Loss mode: pair-wise infoNCE")
elif args.loss_mode == 'mocov3':
print("Loss mode: mocov3(infoNCE)")
elif len(args.loss_mode) == 0:
print("Loss mode: test")
args.loss_mode = 'test'
else:
raise ValueError("Unknown loss mode: ", args.loss_mode)
tb.add_row(["Loss mode", args.loss_mode])
# create model
print(f"=> creating model '{args.arch}'")
tb.add_row(["arch", args.arch])
tb.add_row(["Initialize by", args.pretrained])
if args.arch.startswith('swin'):
# Unlike moco whose pretrained weights contain both base and momentum encoder,
# swin transformer pretrained weights contains only the backbone (base encoder) itself.
checkpoint = load_state_dict_from_url(args.pretrained, model_dir="pretrainedIN", map_location="cpu") if args.pretrained.startswith(
"http") else torch.load(args.pretrained, map_location="cpu")
state_dict_model = checkpoint["state_dict" if "state_dict" in checkpoint else "model"]
for onekey in list(state_dict_model.keys()): # remove "head"
if onekey.startswith("head."):
del state_dict_model[onekey]
model = moco.builder.MoCo_Swin(
partial(swin_transformer.__dict__[
args.arch], state_dict=state_dict_model),
args.moco_dim, args.moco_mlp_dim, args.moco_t, args.loss_mode
)
args.output_stride == None
else:
print(f"output_stride is {args.output_stride}.")
tb.add_row(["output stride(os)", args.output_stride])
# from deeplabv3plus. See https://github.com/VainF/DeepLabV3Plus-Pytorch/blob/4e1087de98bc49d55b9239ae92810ef7368660db/network/modeling.py#L34.
if args.output_stride == 8:
replace_stride_with_dilation = [False, True, True]
elif args.output_stride == 16:
replace_stride_with_dilation = [False, False, True]
# default resnet. See https://github.com/pytorch/vision/blob/5b4f79d9ba8cbeeb8d6f0fbba3ba5757b718888b/torchvision/models/resnet.py#L186.
elif args.output_stride == None:
replace_stride_with_dilation = None
else:
raise ValueError(
f"The options '--output-stride' support only None, 8 or 16, but got {args.output_stride} of type {type(args.output_stride)}.")
model = moco.builder.MoCo_ResNet(
partial(torchvision_models.__dict__[
args.arch], zero_init_residual=True, replace_stride_with_dilation=replace_stride_with_dilation),
args.moco_dim, args.moco_mlp_dim, args.moco_t, args.loss_mode)
model = load_moco_backbone(model, args=args)
tb.add_row(["softmax temperature", args.moco_t])
# store total batch_size
# equivalent equiv_batch_size=args.batch_size*grad_accum
equiv_batch_size = args.batch_size*args.grad_accum
tb.add_row(["batch size", equiv_batch_size])
# infer learning rate before changing batch size
tb.add_row(["user specified lr", args.lr])
args.lr = args.lr * equiv_batch_size / 256
tb.add_row(["scaled lr", args.lr])
if not torch.cuda.is_available():
print('using CPU, this will be slow')
elif args.distributed:
# apply SyncBN
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
# For multiprocessing distributed, DistributedDataParallel constructor
# should always set the single device scope, otherwise,
# DistributedDataParallel will use all available devices.
if args.gpu is not None:
torch.cuda.set_device(args.gpu)
model.cuda(args.gpu)
# When using a single GPU per process and per
# DistributedDataParallel, we need to divide the batch size
# ourselves based on the total number of GPUs we have
args.batch_size = int(args.batch_size / args.world_size)
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.gpu])
else:
model.cuda()
# DistributedDataParallel will divide and allocate batch_size to all
# available GPUs if device_ids are not set
model = torch.nn.parallel.DistributedDataParallel(model)
elif args.gpu is not None:
torch.cuda.set_device(args.gpu)
model = model.cuda(args.gpu)
else:
# AllGather/rank implementation in this code only supports DistributedDataParallel.
raise NotImplementedError(
"You have to either use DistributedDataParallel or specify one GPU by `--gpu`.")
if args.optimizer == 'lars':
optimizer = moco.optimizer.LARS(model.parameters(), args.lr,
weight_decay=args.weight_decay,
momentum=args.momentum)
elif args.optimizer == 'adamw':
optimizer = torch.optim.AdamW(model.parameters(), args.lr,
weight_decay=args.weight_decay)
tb.add_rows([
["optimizer", args.optimizer],
["weight decay", args.weight_decay]
])
scaler = torch.cuda.amp.GradScaler()
list_datasets = args.dataset
dataset_str = ""
tb.add_row(["dataset(s)", list_datasets])
for i, dataset in enumerate(list_datasets):
if i == len(list_datasets)-1:
dataset_str = dataset_str+dataset
else:
dataset_str = dataset_str+dataset+"N"
cudnn.benchmark = True
# Data loading code
traindir = args.dataroot
normalize = et.ExtNormalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
print(f"Crop size: {args.cropsize}")
tb.add_row(["crop size", args.cropsize])
# directly resize original image for complete semantic information
augmentation0 = [
et.ExtResize(args.cropsize),
et.ExtRandomCrop(args.cropsize),
et.ExtRandomHorizontalFlip(),
et.ExtToTensor(),
normalize
]
# follow BYOL's augmentation recipe: https://arxiv.org/abs/2006.07733
augmentation1 = [
# et.ExtResize(args.cropsize),
# et.ExtRandomCrop(args.cropsize),
et.ExtRandomResizedCrop(args.cropsize, scale=(args.crop_min, 1.)),
et.ExtRandomApply([
transforms.ColorJitter(0.4, 0.4, 0.2, 0.1) # not strengthened
], p=0.8),
et.ExtRandomGrayscale(p=0.2),
et.ExtRandomApply([moco.loader.GaussianBlur([.1, 2.])], p=1.0),
et.ExtRandomHorizontalFlip(),
et.ExtToTensor(),
normalize
]
augmentation2 = [
# et.ExtResize(args.cropsize),
# et.ExtRandomCrop(args.cropsize),
et.ExtRandomResizedCrop(args.cropsize, scale=(args.crop_min, 1.)),
et.ExtRandomApply([
transforms.ColorJitter(0.4, 0.4, 0.2, 0.1) # not strengthened
], p=0.8),
et.ExtRandomGrayscale(p=0.2),
et.ExtRandomApply([moco.loader.GaussianBlur([.1, 2.])], p=0.1),
et.ExtRandomApply([moco.loader.Solarize()], p=0.2),
et.ExtRandomHorizontalFlip(),
et.ExtToTensor(),
normalize
]
train_dataset = semclDataset(traindir,
transform=moco.loader.TwoCropsTransformWithItself(
et.ExtCompose(augmentation0),
et.ExtCompose(augmentation1),
et.ExtCompose(augmentation2)),
datasets=list_datasets
)
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(
train_dataset)
else:
train_sampler = None
print("Use %d workers in torch.utils.data.DataLoader for each GPU." %
args.workers)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=(
train_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=train_sampler, drop_last=True)
# use the following expression to remove tail mini-batch if len(train_loader) cannot be evenly divided by args.grad_accum
iters_per_epoch = math.floor(
len(train_loader)/args.grad_accum)*args.grad_accum
global forw_backw_iters
if args.epochs is None:
# The total iterations should be extend for {args.grad_accum} times, since we do one optimizer step every {args.grad_accum} iters.
# forward-backward iteration = update_iter*grad_accum
forw_backw_iters = args.iters*args.grad_accum
args.epochs = math.ceil(forw_backw_iters/iters_per_epoch)
else: # use the set epoch to calculate total iters
# num epochs is unrelated to grad_accum. The model would be updated for args.epochs*iters_per_epoch/args.grad_accum times.
forw_backw_iters = args.epochs*iters_per_epoch
global num_steps
num_steps = int(forw_backw_iters/args.grad_accum)
if args.grad_accum > 1:
print(
f"Due to gradient accumulation {args.grad_accum}, the total forward-backward iteration is {forw_backw_iters} (~{args.epochs} epochs), which is equivalent to update the model for {num_steps} iterations as user specified with batchsize (grad_accum*batch_size=) {equiv_batch_size}).")
tb.add_rows([
["epochs", args.epochs],
["iters(forward-backward)", forw_backw_iters],
["iters(update steps)", num_steps]
])
# logger
log_path = os.path.join("work_dirs",
dataset_str,
args.arch,
args.loss_mode,
f"batchsize{equiv_batch_size:04d}")
log_file_name = os.path.join(log_path,
f"{start_time.strftime('%Y%m%d_%H%M%S')}_{dataset_str}_{args.arch}{('os'+str(args.output_stride)) if args.output_stride is not None else ''}_{args.loss_mode}_ecd{args.epochs:04d}ep{(args.iters if args.epochs is None else num_steps)}itbatchsize{equiv_batch_size:04d}_crop{args.cropsize}.log")
logger = get_logger(name="semclTraining", log_file=log_file_name)
summary_writer = SummaryWriter(
log_dir=os.path.join("work_dirs",
dataset_str,
args.arch,
args.loss_mode,
f"batchsize{equiv_batch_size:04d}",
),
filename_suffix=f"{args.arch}{('os'+str(args.output_stride)) if args.output_stride is not None else ''}_{args.loss_mode}_ecd{args.epochs:04d}ep{(args.iters if args.epochs is None else num_steps)}itbatchsize{equiv_batch_size:04d}_crop{args.cropsize}"
) if not args.multiprocessing_distributed or (
args.multiprocessing_distributed and args.rank == 0) else None
# lr scheduler
lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(
optimizer, max_lr=args.lr, total_steps=num_steps, pct_start=0.125 if args.warmup_ratio is None else args.warmup_ratio)
"""
[OneCycleLR — PyTorch documentation](https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.OneCycleLR.html#onecyclelr)
The total model update times is determined by args.iters regardless of args.grad_accum
pct_start (float): The percentage of the cycle (in number of steps) spent increasing the learning rate.
"""
# optionally resume from a checkpoint
global moco_m_global
if args.resume:
if os.path.isfile(args.resume):
logger.info(f"=> loading checkpoint '{args.resume}'")
if args.gpu is None:
checkpoint = torch.load(args.resume)
else:
# Map model to be loaded to specified single gpu.
loc = f"cuda:{args.gpu}"
checkpoint = torch.load(args.resume, map_location=loc)
args.start_epoch = checkpoint['epoch']
model.load_state_dict(
checkpoint["state_dict" if "state_dict" in checkpoint else "model"])
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
scaler.load_state_dict(checkpoint['scaler'])
moco_m_global = checkpoint['moco_moemtum']
logger.info(
f"=> loaded checkpoint '{args.resume}' (epoch {checkpoint['epoch']})")
del checkpoint
tb.add_row(["resume", args.resume])
else:
logger.info(f"=> no checkpoint found at '{args.resume}'")
else:
moco_m_global = args.moco_m
tb.add_row(["moco momentum", moco_m_global])
ckpt_path = os.path.join(args.output_dir, "ckpt",
dataset_str,
args.arch,
args.loss_mode,
f"batchsize{equiv_batch_size:04d}",
f"{dataset_str}_{args.arch}{('os'+str(args.output_stride)) if args.output_stride is not None else ''}_{args.loss_mode}_ecd{args.epochs:04d}ep{(args.iters if args.epochs is None else num_steps)}itbatchsize{equiv_batch_size:04d}_crop{args.cropsize}.pth.tar")
logger.info(f"Checkpoints will be saved to {ckpt_path}.")
tb.add_row(["save ckpt to", ckpt_path])
logger.info(f"Training config summary:\n{tb}")
# suppress printing if not first GPU on first node
if args.multiprocessing_distributed and (args.gpu != 0 or args.rank != 0):
def print_pass(*args):
pass
builtins.print = print_pass
training_start_ts = time.time()
for epoch in range(args.start_epoch, args.epochs):
epoch_start = datetime.now()
logger.info(f"{epoch_start}: Start epoch {epoch}/{args.epochs}.")
if args.distributed:
train_sampler.set_epoch(epoch)
# train for one epoch
train(train_loader, model, optimizer, lr_scheduler,
scaler, summary_writer, epoch, args, logger)
# only the first GPU saves checkpoint
if not args.multiprocessing_distributed or (args.multiprocessing_distributed and args.rank == 0):
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'scaler': scaler.state_dict(),
'moco_moemtum': moco_m_global,
}, is_best=False, filename=ckpt_path
)
logger.info(
f"{datetime.now()}: Save checkpoint of epoch {epoch} to {os.path.abspath(ckpt_path)}")
epoch_end = datetime.now()
logger.info(
f"Epoch {epoch}/{args.epochs} takes {epoch_end-epoch_start}.")
epoch_end_ts = time.time()
# calculate ETA (estimated time of arrival)
training_dur = epoch_end_ts-training_start_ts
eta = datetime.fromtimestamp(time.time()+training_dur/(
(epoch+1-args.start_epoch)*iters_per_epoch)*(forw_backw_iters-1-(epoch+1)*iters_per_epoch))
logger.info(f"[ETA] {eta}, {time.tzname[0]}")
print()
if not args.multiprocessing_distributed or args.rank == 0:
summary_writer.close()
def train(train_loader, model, optimizer, lr_scheduler, scaler, summary_writer, epoch, args, logger):
batch_time = AverageMeter('BatchTime', ':6.3f')
data_time = AverageMeter('DataTime', ':6.3f')
learning_rates = AverageMeter('LR', ':.4e')
losses = AverageMeter('Loss', ':.4e')
moco_momentum = AverageMeter('moco_momemtum', ':.8e')
progress = ProgressMeter(
forw_backw_iters, # num update iters is determined by user-defined iteration regardless of grad_accum. But forward-backward iteration is forw_backw_iters
[batch_time, data_time, learning_rates, losses, moco_momentum],
logger=logger,
prefix=f"Epoch: [{epoch}]")
# switch to train mode
model.train()
end = time.time()
# use condition i >= math.floor(iters_per_epoch/args.grad_accum)*args.grad_accum to remove tail mini-batch if iters_per_epoch cannot be evenly divided by args.grad_accum
iters_per_epoch = math.floor(
len(train_loader)/args.grad_accum)*args.grad_accum
for i, (anchor_images, nanchor_images) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
# check iterations
cur_iters = epoch*iters_per_epoch+i
if (iter_mode_global == 'iters' and cur_iters >= args.iters) or i >= iters_per_epoch:
progress.display(cur_iters) # print status of last iteration
break
if args.gpu is not None:
anchor_images = anchor_images.cuda(args.gpu, non_blocking=True)
nanchor_images = nanchor_images.cuda(args.gpu, non_blocking=True)
cur_lr = lr_scheduler.get_last_lr()[0]
learning_rates.update(cur_lr)
# adjust momentum coefficient per update iteration
if (i+1) % args.grad_accum == 0 and args.moco_m_cos:
moco_m_global = adjust_moco_momentum(
epoch + i / iters_per_epoch, args)
moco_momentum.update(moco_m_global)
# compute output
with torch.cuda.amp.autocast(True):
# Normalize our loss (if averaged). See https://gist.github.com/thomwolf/ac7a7da6b1888c2eeac8ac8b9b05d3d3#file-gradient_accumulation-py-L5.
loss = model(anchor_images, nanchor_images,
moco_m_global) / args.grad_accum
losses.update(loss.item(), anchor_images[0].size(0))
# compute gradient and do step
# optimizer.zero_grad() # If we reset gradients tensors here, the gradients will never accumulate.
scaler.scale(loss).backward()
if (i+1) % args.grad_accum == 0: # Wait for several backward steps
# optimizer.step() # optimizer.step() should not be called when amp is applied. See https://discuss.pytorch.org/t/ddp-amp-gradient-accumulation-calling-optimizer-step-leads-to-nan-loss/162624.
scaler.step(optimizer)
scale = scaler.get_scale()
scaler.update()
# To avoid warning: Detected call of lr_scheduler.step() before optimizer.step(). In PyTorch 1.1.0 and later, you should call them in the opposite order: optimizer.step() before lr_scheduler.step(). Failure to do this will result in PyTorch skipping the first value of the learning rate schedule.
# Solution: https://discuss.pytorch.org/t/optimizer-step-before-lr-scheduler-step-error-using-gradscaler/92930/10
skip_lr_sched = (scale > scaler.get_scale())
# Reset gradients tensors only if we have done a step. See https://gist.github.com/thomwolf/ac7a7da6b1888c2eeac8ac8b9b05d3d3?permalink_comment_id=2921188#gistcomment-2921188. And https://pytorch.org/docs/stable/notes/amp_examples.html#gradient-accumulation.
optimizer.zero_grad()
if args.rank == 0:
summary_writer.add_scalar(
"loss", loss.item(), cur_iters)
summary_writer.add_scalar(
"lr", cur_lr, cur_iters)
summary_writer.add_scalar(
"moco_momentum", moco_m_global, cur_iters)
if not skip_lr_sched:
lr_scheduler.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# print progress at args.print_freq and epoch start
if cur_iters % args.print_freq == 0 or i == 0 or i == iters_per_epoch-1:
progress.display(cur_iters)
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
par_dir = os.path.dirname(filename)
if os.path.exists(par_dir) is not True:
os.makedirs(par_dir)
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, 'model_best.pth.tar')
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, logger, prefix="",):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
self.logger = logger
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
self.logger.info('\t'.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def adjust_moco_momentum(epoch, args):
"""Adjust moco momentum based on current epoch"""
m = 1. - 0.5 * (1. + math.cos(math.pi * epoch /
args.epochs)) * (1. - args.moco_m)
return m
def load_moco_backbone(backbone: nn.Module, args):
linear_keyword = 'fc'
# load state_dict
checkpoint = load_state_dict_from_url(args.pretrained, model_dir="pretrainedIN", map_location="cpu") if args.pretrained.startswith(
"http") else torch.load(args.pretrained, map_location="cpu")
if args.gpu == 0:
tb.add_row([f"Initialize by", args.pretrained])
if args.arch == 'resnet50':
# rename moco pre-trained keys
state_dict = checkpoint['state_dict']
for k in list(state_dict.keys()):
# retain only base_encoder up to before the embedding layer
# and not k.startswith('module.base_encoder.%s' % linear_keyword)
if k.startswith('module.'):
# remove prefix
state_dict[k[len("module."):]] = state_dict[k]
# delete renamed or unused k
del state_dict[k]
else: # resnet101
# rename pretained layers
state_dict = checkpoint
for k in list(state_dict.keys()):
if k.startswith(linear_keyword):
continue
state_dict['base_encoder.'+k] = state_dict[k]
state_dict['momentum_encoder.'+k] = state_dict[k]
# delete renamed or unused k
del state_dict[k]
args.start_epoch = 0
msg = backbone.load_state_dict(state_dict, strict=False)
print(
f"Load pretrained {args.arch} weights from {args.pretrained} with unmatched keys: {msg}")
return backbone
if __name__ == '__main__':
main()