-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrag_ui2.py
89 lines (71 loc) · 3.16 KB
/
rag_ui2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import streamlit as st
import PyPDF2
from transformers import pipeline
from chromadb import chromadb
from chromadb.utils.embedding_functions import SentenceTransformerEmbeddingFunction
from tempfile import NamedTemporaryFile
from langchain.text_splitter import RecursiveCharacterTextSplitter, SentenceTransformersTokenTextSplitter
# Initialize the local language model (LLM) for text generation
llm = pipeline("text-generation", model="gpt2") # Change model according to your preference
# Initialize ChromaDB for chunking and embedding
chromadb = chromadb.Client()
# Function to extract text from a PDF file
def extract_text_from_pdf(pdf_path):
text = ""
with NamedTemporaryFile(dir='.', suffix='.pdf') as f:
f.write(pdf_path.getbuffer())
with open(f.name, "rb") as file:
reader = PyPDF2.PdfReader(f.name)
for page_num in range(len(reader.pages)):
text += reader.pages[page_num].extract_text()
f.close()
return text
# Function to perform Retrieval-Augmented Generation (RAG) with PDFs
def rag_with_pdf(prompt, pdf_path, llm, chromadb, top_k=5):
text_from_pdf = extract_text_from_pdf(pdf_path)
# print(word_wrap(text_from_pdf))
print(text_from_pdf)
character_splitter = RecursiveCharacterTextSplitter(
separators=["\n\n", "\n", ". ", " ", ""],
chunk_size=1000,
chunk_overlap=0
)
character_split_texts = character_splitter.split_text('\n\n'.join(text_from_pdf ))
# print(word_wrap(character_split_texts[10]))
print(character_split_texts)
print(f"\nTotal chunks: {len(character_split_texts)}")
token_splitter = SentenceTransformersTokenTextSplitter(chunk_overlap=0, tokens_per_chunk=256)
token_split_texts = []
for text in character_split_texts:
token_split_texts += token_splitter.split_text(text)
# print(word_wrap(token_split_texts[10]))
print(token_split_texts[10])
print(f"\nTotal chunks: {len(token_split_texts)}")
embedding_function = SentenceTransformerEmbeddingFunction()
print(embedding_function([token_split_texts[10]]))
chroma_collection = chromadb.get_or_create_collection("example", embedding_function=embedding_function)
ids = [str(i) for i in range(len(token_split_texts))]
chroma_collection.add(ids=ids, documents=token_split_texts)
chroma_collection.count()
results = chroma_collection.query(query_texts=[prompt], n_results=5)
retrieved_documents = results['documents'][0]
return results['documents'][0]
# Streamlit UI
def main():
st.title("RAG with Local PDFs")
# Prompt input
prompt = st.text_input("Enter Prompt", "")
# PDF file upload
pdf_file = st.file_uploader("Upload PDF File", type=["pdf"])
if st.button("Generate Text"):
if prompt == "":
st.warning("Please enter a prompt.")
elif pdf_file is None:
st.warning("Please upload a PDF file.")
else:
# Perform RAG with the provided prompt and PDF file
generated_text = rag_with_pdf(prompt, pdf_file, llm, chromadb)
st.subheader("Generated Text")
st.write(generated_text)
if __name__ == "__main__":
main()