-
Notifications
You must be signed in to change notification settings - Fork 114
/
Copy path001.Animation_3D_Binomial_Coefficients_Graph_wit_Heatmap.py
61 lines (48 loc) · 2.34 KB
/
001.Animation_3D_Binomial_Coefficients_Graph_wit_Heatmap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import numpy as np
import pandas as pd
import plotly.graph_objects as go
from plotly.subplots import make_subplots
def binomial_coefficient(n, k):
if k == 0:
return 1
return (n * binomial_coefficient(n - 1, k - 1)) // k
def binomial_expansion(x, n, terms=5):
expansion = []
for k in range(terms):
term = binomial_coefficient(n, k) * (x ** k)
expansion.append(term)
return sum(expansion)
x_vals = np.linspace(-1, 1, 100)
n_vals = [2, 3, 4, 5]
terms = 10
# Create an animation of the binomial expansion for different n values
animation_frames = []
for n in n_vals:
y_vals = [binomial_expansion(x, n, terms) for x in x_vals]
frame = go.Frame(data=[go.Scatter(x=x_vals, y=y_vals, mode='lines', name=f'n = {n}')])
animation_frames.append(frame)
fig = make_subplots(rows=2, cols=2, subplot_titles=[f'n = {n}' for n in n_vals])
fig.update_layout(title_text='Interactive Binomial Expansion Animation',
xaxis_title='x', yaxis_title='(1+x)^n')
for n in n_vals:
y_vals = [binomial_expansion(x, n, terms) for x in x_vals]
fig.add_trace(go.Scatter(x=x_vals, y=y_vals, mode='lines', name=f'n = {n}'))
fig.frames = animation_frames
# Add slider for animation control
sliders = [dict(steps=[dict(args=[{'visible': [False] * len(fig.data)}, {'visible': [True] * (n + 1)}],
label=f'n = {n}', method='update') for n in range(len(n_vals))],
active=0, transition={'duration': 300})]
fig.update_layout(updatemenus=[dict(type='buttons', showactive=False, buttons=[dict(label='Play',
method='animate', args=[None, {'frame': {'duration': 500, 'redraw': True},
'fromcurrent': True, 'transition': {'duration': 300}}])])],
sliders=sliders)
fig.show()
data = []
for n in n_vals:
expansion_coeffs = [binomial_coefficient(n, k) * (-1)**k for k in range(terms)]
data.append(expansion_coeffs)
coeff_df = pd.DataFrame(data, columns=[f'Coefficient {k}' for k in range(terms)], index=n_vals)
heatmap_fig = go.Figure(data=go.Heatmap(z=coeff_df.values, x=coeff_df.columns, y=coeff_df.index, colorscale='Viridis'))
heatmap_fig.update_layout(title='Binomial Coefficients Heatmap',
xaxis_title='k (Term index)', yaxis_title='n')
heatmap_fig.show()